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INTRODUCTION

! I IO A 1 tY C'
a D .t SP c i&

This special issue of Electromagnetics is dedicated to the subject of the
Singularity Expansion Method (SEM) - in particular the mathematical aspects of
SEM. In fact, the issue forms the proceedings of a meeting "Mathematical
Foundations of the Singularity Expansion Method" held at the Carnahan House
of the University of Kentucky in November 1980 under the sponsorship of the
Air Force Office of Scientific Research (AFOSR). The purpose of the meeting
was to bring together a group of mathematicians and engineers who have worked
on different aspects of the SEM to foster interdisciplinary communication
between the groups. The hope, of course, was that this communication might

a lead to the resolution of some questions regarding the mathematical rigor
that have persisted throughout the development of the SEM. This communication
we believe certainly led to a better understanding between the two groups of
what the important questions are and the available means of attacking these
questions.

Ten years have passed since Carl Baum first formalized the SEM as a
means of treating transient and broad band electromagnetic scattering
problems[3 "I]'* This development was sparked by the results from many experi-
ments where different scatterers were exposed to transient electromagnetic
fields. It was observed during these experiments that the response of the
scatterer appeared to consist of a superposition of damped sinusoidal
oscillations whose frequencies are related to the size of the scatterer.
The natural question that arose was: "Is it possible to express any external
scattering response as a sum of damped oV#illations whose resonances and
damping constants only depend on the scatterer itself, much in the same way
as one can construct the response of a cavity?" The SEM was developed when
trying to answer this question.

Much work during the last ten years has gone into trying to put the SEM
on a solid mathematical foundation and applying it to various scattering
problems. Workers who have tried to solidify the mathematical foundations
for the method have found a great deal of frustration in dealing with such
issues as space-time problems, nonself-adjoint operators, and analytic function
theory. There are few general mathematical results which define the SEM
representation within the confines of well defined mathematical and physical
constraints. In many cases, workers have had to make whatever observations
they can from the solution of a specific problem and then extend these results

A bibliography on SD( is included at the end of this issue and is shared in
common by the papers herein.

Electmronngtlcs 1:349-350, 1981
0272-343/81/,4034O.25 346



350 INTRODUCTION

using their physical/mathematical intuition. The wealth of semiempirical data
acquired this way nevertheless have resulted in heuristically derived rules
for the applicability and validity of the SEM. Thus, even in the face of the
persistent difficulties in developing general theory, SEN stands as a powerful
tool in electromagnetic and acoustic scattering theory.

The strength of the SEM primarily rests with the fact that both transient
and time harmonic scattering quantities can be represented as a sum of conven-
iently factored products. One factor in this product depends only on the
scatterer itself whereas the other depends on the exciting (or incident field.)
The quantities that enter into the object-dependent factor are the object's
complex resonant frequencies and the associated natural mode currents. The
constellation of natural frequencies can be used to characterize the scattering
object, thus opening the possibility of using SEN for target classification
purposes. The expansion of the object's response in terms of natural modes
allows for a circuit description of certain EN properties of the object.

The discussions during the meeting in the Carnahan House reflected the
differences in the mathematicians's and engineer's outlooks. A mathematician
participant was careful to categorize his comments into "results" (conclusions
which can be mathematically proven) and "observations" (conclusions drawn
from special cases but not proven mathematically). Engineers were quick to
state that a significant part of their SEN related activity is predicated
upon "observations" only (as is so much of their overall work). As a
consequence the papers contained in this issue can perhaps be described as
a collection of "results" and "observations." We leave it to the reader to
distinguish between "results" and "observations" and the relative merit of

the two.

We wish to thank C. L. Dolph for his help in planning the SEM meeting
and R. N. Buchal of AFOSR for his support of and interest in the meeting. The
assistance and support of the College of Engineering of the University of
Kentucky and its Office of Continuing Education are also gratefully acknowledged.

The bibliography at the end of this issue was prepared by Krzysztof A. Michalski.

* L. Wilson Pearson and Lennart Marn
Guest Editors



THE SINGULARITY EXPANSION METHOD:
BACKGROUND AND DEVELOPMENTS

Carl E. Baum, Air Force Weapons Laboratory, Kirtland AFB, NM 87117

ABSTRACT

The singularity expansion method (SEM) arose from the observation that the
transient response of complex electromagnetic scatterers appeared to be domin-
ated by a small number of damped sinusoids. In the complex frequency plane,

,, these damped sinusoids are poles of the Laplace-transformed response. The
question is then one of characterizing the object response (time and frequency
domains) in terms of all the singularities (poles, branch cuts, entire func-
tions) in the complex frequency plane (hence singularity expansion method).
Building on the older concept of natural frequencies, formulae were developed
for the pole terms from an integral-equation formulation of the scattering pro-
cess. The resulting factoring of the pole terms has important application con-
sequences. Later developments include the eigenmode expansion method (EEM)
which diagonalizes the integral-equation kernels and which can be used as an
intermediate step in ordering the SEM terms. Additional concepts which have
appeared include eigenimpedance synthesis and equivalent electrical networks.
Of current interest is the use of the theoretical formulae to efficiently ana-
lyze and order experimental data. Related to this is the application of SEM
results to target identification. This paper does not delve into the mathe-
matical details; it presents an overview of the history and major concepts and
results in SEM and EEM and related matters.

1. BACKGROUND

1.1 Natural Frequencies

An important antecedent physical concept is that of natural frequencies.
These are thought of as frequencies for which there Is a response with no forc-
ing function. Also called natural oscillations or resonances, these in general
exhibit a damping phenomenon (in the case of passive objects) which can be
interpreted as one part of a complex frequency. In electromagnetic responses
of various scatterers/antennas, there are various examples of early work on
natural frequencies. The perfectly conducting thin wire and circular loopwere
treated by numerous Investigators including Pocklington in 1897 [1.141*,
Abraham [1.1,1.2], Oseen [1.6-1.9], Halldn [1.5], and Rayleigh [1.15,1.161.
This was extended to perfectly conducting prolate spheroids by Page and Adams
[1.10-1.13] and perfectly conducting spheres by Stratton (1.21]. An important

*Citation numnbers refer to the collected bibliography appearing elsewhere in

this issue.

Electomanetics 1:351-360, 1981
0272.6343/81)4031-102.25
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352 C. E. BAUM

contribution was made by Schwinger [6.89] who treated the special case of elec-
tromagnetic fields internal to perfectly conducting cavities. In this case the
natural frequencies are all on the jw axis (pure imaginary) in the complex-
frequency (s) or Laplace-transform plane, and the natural modes have a conve-
nient orthogonality property.

1.2 Laplace Transform

Various mathematical tools had been in use in electrical engineering and
provided some starting point for constructing basic SEM formulae when the time
was ripe. One such tool was certainly the Laplace (or Fourier) transform which
we take in the two-sided sense as

p(S) J' F(t) e-st dt , F(t) 0 +0 i(s) es ds

t time , (above) =_Laplace transform
(1.1)

s 02 + jw =Laplace transform variable =complex frequency

F(t) E any Laplace transformable time function or operator (scalar,
vector, tensor, etc.)

where the Bromwich contour, Refs] = Qo for inversion is chosen in the strip of
convergence, say R a < Re[s] < Q b

1.3 Complex Variable Theory

Considering the response of some antenna or scatterer as a function of s
in the complex s plane one can describe the s-plane behavior in terms of the
singularities (or boundaries of analyticity) in the complex plane, including
the behavior at infinity (entire function). Appropriate contour integrals can
be used to describe the response; the contours can be deformed to give separate
terms for each singularity in both complex-frequency and time domains [2.3].

1.4 Circuit and Fystem Theory

In electrical engineering there has been a considerable body of knowledge
developed concerning electrical networks. This is summnarized in circuit analy-
sis and circuit synthesis theory which (especially in the linear case) is docu-
mented in numerous texts. This is further extended to linear system theory and
control theory which are now major subject areas with an extensive literature.
The use of the Laplace transform is quite extensive in these areas, and expan-
sions in terms of poles are often used. Our problem of electromagnetic inter-
action (scattering) is related in that a scatterer can be thought of as a dis-
tributed network or system of a special kind (with response described by the
Maxwell equations). Furthermore, it is possible to describe the scattering
process by an equivalent circuit by using circuit synthesis concepts to synthe-
size (perhaps approximately) the appropriate complex transfer functions and
impedances of the scatterer.
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1.5 Integral Equations for Electromagnetic Scatterers and Antennas

For perfectly conducting objects (as well as for certain types of impedance
loading) an integral equation reduces the problem from three space dimensions (the
Maxwell differential equations) to two dimensions (the scatterer surface).
Perhaps more important, the radiation condition at infinity for the scattered
fields is explicitly incorporated into the integral equation so that one need
not be concerned with the analytic continuation of the radiation condition into
the left half of the s plane. Well-known integral equations include the
electric-field integral equation and the magnetic-field integral equation (in
various forms). In one-dimensional approximate forms (for wires) there are the
Hall6n and Pocklington equations. The details of these equations donot concern
us here. The important point is that they all have the form

-*I r, r, ; s) : ( 's)> = 1(-r,s)

r,s) a incident or source field of some kind (specified) (1.2)

F(r,r';s) kernel (related to Green's function) which may be a distribution

J(',s) E- typically current density or surface current density

He re K,> < symmetric product 
(1.3)

is our convenient way to indicate multiplication (of the two terms separated by
the comma) followed by integration with respect to the common spatial coordin-
ates over the domain of the scatterer; the type of multiplication (e.g., lot
(.) or cross (x) product) is indicated by appropriate symbols above the comma.
With additional commas this symmetric product is extended to as many terms and
integrations as desired.

One can in principle solve the integral equation by inverting the integral
operator. One formally determines an inverse kernel (which may be a distribu-
tion) which gives a solution

(1.4)
rrr )r' -1°,';s)> T ('r - 'r') =_ identity on scatterer

where the identity is taken in the sense of the relevant vector components and

domain of integration (e.g., two or three dimensions for surfaces or volumes,
respectively).

For SEM these integral equations have proven to be very useful in con-
structing formulae for the various terms. Singularity expansions can be con-
structed for both the response I and the inverse kernel r- 1 (related to the
class 1 and class 2 forms of the coupling coefficient, respectively). Further-
more, the integral-equation kernels can be used to construct eigenmode expan-
sions which give additional insight into the SEM terms.

1.6 Matrix and Operator Theory

Integral equations have been cast in approximate numerical form by the
moment method (MoM). In this numerical solution procedure (typically for use
with large digital computers) the current density (response) is expanded in a
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set of functions (of finite number in practice) called expansion functions; the
incident or source field is similarly expanded in a set of testing functions.*
The vectors of coefficients of these two sets (taken with equal numbers of
components) are related by a matrix (square) which replaces the integral-
equation operator in the form

(Pn,m(S)) • (n(S)) = n(S)) (1.5)

Inverting the matrix, one has an approximate solution to the original equation
(1.2) in a form analogous to (1.4). In matrix form our equation is more famil-
iar to electrical engineers because such types of equations appear in circuit
problems. The arsenal of matrix theory is now at our disposal. Eigenvectors
and eigenvalues can be constructed for representing the solution and understand-
ing its properties. Combining matrix (or operator) theory with complex variable
theory is essential to SEM. This paper will not delve into the mathematical
theory of such operators, this subject being left to others.

2. EARLY DEVELOPMENT OF SEM

2.1 The Beginning

In early 1971 the question was posed (by this author). Experimental
observations of damped sinusoids in EMP experimentst suggested poles in the
corresponding Laplace transforms. Then in Laplace-transform or complex-
frequency domain this led to the idea of expanding the response in terms of all
the singularities in the complex frequency plane. Besides poles, such singu-
larities might include branch points and associated integrals, essential singu-
larities, and (for completeness) entire function(s) corresponding to any
singularities at infinity.

Concentrating on the poles it was observed that, except for poles in the
exciting waveform (transformed), these were the natural frequencies of the
scatterer or antenna because integral equations describing the object response
would admit non-trivial responses at such frequencies with no excitation. Said
another way, the response at an object pole is infinite if the excitation is
non-zero at such a complex frequency. Interpreting (1.2) in this sense gives

r (')> = , s- natural frequency<''" s)- i,-, >s(2.1)
3 () = natural mode corresponding to

or from (1.5) In MoM form

(Tn(s0d)) (jn) = (On) det(( n(s0)) = 0 (2.2)

which gives a way of computing natural frequencies. Noting that the matrix is
singular (and hence so is its transpose) we can write

• (xn(sa)) = (on) , K' "( , ';s)> = (2.3)

Harrington, R F.. Flel _imputation by Moment Methods, Macmillan, 1968.

Joint Special Issue on the Nuclear Electromagnetic Pulse, IEEE Trans. Antennas

and Propagation, AP-26, Jan 1978, and IEEE Trans. EMC, EMC-20, Feb 1978.
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L (;) F coupling mode corresponding to s

where the use of the coupling mode will become clear later. For the common
case of a symmetric kernel (as in the E-field or impedance integral equation)
the coupling mode can be set equal to the natural mode. The choice of a nor-
malization for these modes is somewhat arbitrary.

Having equations for the natural frequencies and modes then construct a
solution in the form

U(r's) = n "(")(S - sf 1 + other singularity terms

= normalized (delta-function) response to incident or source field
E 0lf-1(s r(;s)

= E s)(,s) , coupling coefficient (2.4)

f(s) incident or source waveform (Laplace transformed)

E0 scaling amplitude for incident waveform

where the postulated coupling coefficient contains the spatial characteristics
of the incident field. Here first order poles have been assumed, although
higher order poles can be included. One can also include the incident waveform
in the pole residues as -

(r,s) = E0  ? (s )n- (r)(s - s )- + other singularity terms (2.5)

This was the general state of knowledge on this subject when in September
1971 a special meeting was held at Northrop Corporate Laboratories office in
Pasadena, California. Many prominent electromagnetic specialists participated
in this discussion of SEM. The basic concepts were presented as outlined above 4

to stimulate basic ideas and potential application to areas such as EMP data
analysis, target identification, equivalent circuits, etc.

2.2 Evaluation of the Coupling Coefficient

In late 1971 a key discovery was made in that formulae for the coupling
coefficient were developed in terms of the integral-equation terms in (1.2).
This was done independently with different approaches by Baum [3.1] and by
Marin and Latham [3.7]. The details of these derivations need not concern us
here as they were rather involved. Subsequent papers have simplified this somewhat.

Noting that the kernelS Vand normalized incident or source field

f(n)(7,s) = Elf'l(s)f(rs) (2.6)

are analytic functions of s near so, expand them in a power series in s - s.
Collecting terms and applying the coupling vector leads to the class 1 coupling
coefficient
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e-) = (ess C)t 0 1, r r (2.7)
<%(r),~J -~ r' ;S ( ,* )>r

dsS=S

where the turn-on time to can be a function of the observer position r. An
alternate form is the class 2 coupling coefficient which results from first
find'ng he SEM representation (Ytrict) of 'land then as in (1.4) operating
on tn)(r',s) with the poles of'- giving

-(s-s )to -

(2) = ela) i(r ) " : )(,

S <r(2.8)< - - d
0C (r) , T-s Nrrr';s) s=s )>

where the turn-on time to can here be a function of both ir and it'. See [2.1]
for a more complete derivation.

The two classes of coupling coefficients have some significant differ-
ences. Except for a delay factor the class 1 form is particularly simple, being
independent of S, so that in time domain the normalized response in (2.4) takes
the form

Uir,t) = n( 0)t () e a u(t - to) + other singularity terms (2.9)aio a( 0a
Here the coupling coefficient at s = sa is

< ... fin)(-s

(0) : (1) : (2) OLa(r) ;s

a s=s <-vaor) d;ss aP >ss a ds=s a a (2.10)

so that both classes reduce to the same thing at the pole (s = sa). While the
class I form gives simple damped sinusoids the class 2 form gives a convolution
as

i1~t 3()() sat
a () o[e u(t)] + other singularity termsO(Lt

o = convolution with respect to time
(2.11)

2) (xsatO u(t - to)]

S<7 S(+) , J- '.r;S) , (' )>
s~s

a

At late times the time-domain pole terms in (2.9) and (2.11) give the same
simple damped sinusoids. For to = 0 in class 2, and to (typically used) in
class I chosen on or before the wave reaches the scatterer, class 1 and class 2
give identical pole terms after the wave passes the body. There are numerous
details concerning the properties of the two classes omitted here. A recent
paper goes into this topic in greater depth [3.51.
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2.3 Example Problems

Now that the floodgates were open numerous investigators considered speci-
fic finite-size scatterers in free space. The early examples were the sphere
(analytically) [3.1], the thin wire (approximate) [4.26], and the thin wire by
numerical (MoM) computation 14.48]. The reader can consult the bibliography in
this special issue for many more examples. A review book chapter by this author
[2.1] summarizes most of the early examples of this type.

3. LATER DEVELOPMENTS

3.1 Natural Modes for Radiated or Scattered Fields

An early extension of the SEM concepts was to go from the currents and
charges on an object to the radiated or scattered fields in the space surround-
ing the object. In 1973 there were papers by Tesche [4.49] concerning the
numerical calculation of the far fields from linear antennas in terms ofnatural
modes, and by Baum [3.31 concerning the formalism of such natural modes for near
and far fields. These results established a concept of transient antenna (or
scatterer) patterns in terms of natural frequencies, modes, and coupling
coefficients.

3.2 Analysis of Experimental Data

Since the original impetus toward SEM came from observations of the gen-
eral properties of the transient electromagnetic response of systems, it is
understandable that the general SEM theory should be applied to such experimen-
tal data. Certain SEM parameters are in principle experimentally observable.
In 1974 a paper (USNC/URSI meeting, Boulder, Colorado, October 1974, later in
[5.16]) by VanBlaricum and Mittra applied the Prony technique to transient EM
scattering waveforms to find the natural frequencies and residues by fitting
the waveform with a sum of damped sinusoids. Since then many investigators
have tried various other techniques in attempts to increase speed of computation,
minimize the effect of noise in the waveform, and maximize the accuracy in
deterr-ining the true poles in the scattering data.

3.3 Eigenmode Expansion Method (EEM)

In 1975 this author introduced the eigenmode expansion method to find more
properties of the SEM [3.4]. One defines eigenvalues and eigenmodes for the
integral operator (kernel) in (1.2) via

' s ; ( s)> B(s)J(rs)
<- ; *= )B(shj 8(r',s)(3)

(3.1)
(s) = eigenvalue

(r,s) = right eigenmode , a (rs) = left eigenmode

Unlike the natural modes the elgenmodes can be generally biorthonormalized as

s 1 for 81 = a2
(1s) 2 18202 0 otherwise
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giving the representations for the kernel (and its inverse)

*n( , ;s) = n (s (r~s) i6r,s) (3.3)
B

and the response

(r=s) X (s) <W B ,s) , (n)(.r )> B(r,s) (3.4)BB

While there are various mathematical problems to be considered concerning
completeness, root vectors, sense of convergence, etc., there are some approxi-
mate ways to view this matter. Casting the integral equation (1.2) into matrix
(MoM) numerical form as in (1.5), the EEM is considered as a problem of finding
the eigenvalues and left and right eigenvectors of ( n,m(s)).

Summarizing some of the SEM related results we have

AB(sB,B) = 0 1 SB, = S OL (3.5)

so that the natural frequencies are zeros of particular eigenvalues (hence
t (B,B')), so that the eigenvalues order or partition the set of natural fre-
quencies. Similarly for the modes (with appropriate normalizations)

() , s (r) (3.6)J rs~l)=J,,,( ji ar's6,B )  j BB, (r

For the denominator in the coupling coefficients we have

Aj d ;'-r*s)I -r (s) (3.7)4
'ds U ds B sB,B'

which allows us to represent class 1 (in (2.7)) and class 2 (in 2.8)) in terms
of EEM quantities.

Another application of EEM is to the synthesis of transient responses via
changing the eigenvalues. Eigenimpedance synthesis considers the eigenvalues
ZB(s) of the impedance (or E-field) integral equation and notes that, if the 4
scatterer or antenna is impedance loaded in certain ways (Z (s)), the eigen-
impedances are modified as

h(s) B (s) + 2(s) (3.8)

which allows one to synthesize a Zj(s) to move the natural frequencies sB,8 , to
other more desirable positions in the complex s plane. These EEM matters are
necessarily quite abbreviated here. More complete reviews are included in
[2.2,2.3). Of special note is the recent extension of Sancer et al. [3.111 in
which the eigenmodes of the "pseudosymmetric" H-field integral equation are
paired with corresponding eigenvalues (normalized) adding to 1.0.

3.4 Target Identification

In the original development of the SEM concept (section 2.1) it was noted
that the natural frequencies of a scatterer were independent of the exciting
fields. This was considered a potentially useful property for target identifi-
cation purposes. In 1975 two groups published papers proposing techniques for

,
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this general kind of target identification,* based on work dating from about
1974. Another groupt gave a spoken paper on this subject in 1975 also. This
was also about the time (1975) of the introduction of the concept of eigenimpe-
dance synthesis for modifying the pole pattern in the s plane to make the
identification more difficult [3.4].

3.5 Equivalent Circuits for Antennas and Scatterers

In 1976 this author showed how to construct formal equivalent circuits at
an antenna/scatterer port from the SEM representation [4.31. A review of this
development is included in [2.3]. The key to this development is to note that
the admittance and short-circuit current (or the impedance and open-circuit
voltage) have the same pole locations in the s plane because they have the same
integral-equation operator; only the source fields are different. For the
short-circuit boundary value problem this leads to a parallel combination of
series "resonant" circuits with series voltage sources. For the open-circuit
boundary value problem one has the dual situation of a series combination of
parallel "resonant" circuits with parallel current sources. More recent inves-
tigations have centered on canonical problems for exploring the realizability
of such networks. Results have been obtained by Pearson et al. [4.33, 4.34,
4.39], Singaraju and Baum [4.2], and Sharpe and Roussi [4.44a].

3.6 Calculation of Natural Frequencies

Initial computations of the natural frequencies from the MoM matrix deter-
minant in (2.2) were by classical Newton and Muller zero-searching techniques
[5.3]. Following an early paper in 1974 [5.1], Baum, Giri, and Singaraju devel-
oped contour integral techniques including computer programs to efficiently and
accurately compute all the natural frequencies in a given portion of the splane
[5.15,5.7]. This is also reviewed in [2.3]. Also of interest is the variational
technique based on EEM concepts proposed by Mittra and Pearson [5.10].

3.7 Fora and Reviews

An important milestone in SEM development was the first special session at
a USNC/URSI meeting in Boulder, Colorado, August 1973. Since that time there
have been many SEM sessions at the various USNC/URSI meetings and IEEE Antennas
and Propagation symposia. Reviews on the subject have been given at the tri-
ennial URSI General Assemblies beginning with the one in Lima, Peru, in 1975.
This author has written three major review papers and book chapters on this
subject [2.1-2.3]; these can be consulted for more complete developments and
numerous references. A review [2.4] by Dolph and Scott treats some of the
applicable mathematical theory. Now SEM has reached another milestone with the

Pearson, L.W., M.L. VanBlaricum, and R. Mittra, A New Method for Radar Target
Recognition Based on the Singularity Expansion Method, Record of IEEE Inter-
national Radar Conference, Arlington, Virginia, April 1975, pp. 452-457.

Moffatt, D.L., and R.K. Mains, Detection and Discrimination of Radar Targets,

IEEE Trans. Antennas and Propagation, May 1975, pp. 358-367.

tDeadrick, F.J., H.G. Hudson, E.K. Miller, J.A. Landt, and A.J. Poggio, Object

Identification via Pole Extraction from Transient Fields, USNC/URSI Meeting,
U. of Illinois, 3-5 June 1975, p. 67.

,-.



360 C. E. BAUM

recent symposium: "Mathematical Foundations of the Singularity Expansion
Method,' University of Kentucky, November 1980. This special SEM issue is the
proceedings of that symposium.

4. CONTINUED DEVELOPMENT

Quo vadimus? Quo vadit SEM? These are difficult questions. SEM is cur-
rently being pursued on two levels. First there is the engineering theory and
applications oriented to meeting the practical needs of transient and broadband
EM applications such as EMP, lightning, and target identification. This is
even finding application in acoustic target identification (see Uberall and
Gaunard references, this issue). It is these applications oriented developments
that I have concentrated on in this paper. On another level the mathematicians
are pursuing a rigorous exploration of the SEN theory with a view to defining
the precise limits of applicability. Other papers in this issue address such
points.

From an applications point of view I see some important areas, both theo-
retical and experimental , for future development. For experimental description
of complex electronic equipment we need to apply all our powerful insights con-
cerning the SEM description to obtaining all the SEM pole (and other) param-
eters from the experimental scattering (or interaction) data. Using (2.5) (in
frequency and/or time domains) one can use the factoring of the pole terms to
exhibit the dependence of the response on the various separate parameters of
the scattering problem. This gives a much more compact representation of the
data (in the resonant region) allowing one to much more readily see the impor-
tant features, including worst cases, etc. of the response. This factorization
can also likely be used to more accurately evaluate the SEM parameters by hav-
ing (2.5) simultaneously fit many data records corresponding to different loca-
tions and excitation conditions.

The construction of equivalent circuits needs much more development.
Alternate canonical forms (such as ladder networks, etc.) need to be developed.
Perhaps other expansions such as a low-frequency expansion [2.2] could be use-
ful in conjunction with SEN and EEM. Both a deeper understanding of SEM/EEM
decomposition of scatterer response, and more accurate and efficient obtaining
of these parameters from experimental data, are needed for the target identifi-
cation problem. This area has a very great practical potential .



MAJOR RESULTS AND UNRESOLVED ISSUES IN SINGULARITY
EXPANSION METHOD

Lennart Marin, The Dikewood Corporation, Santa Monica, CA 90405

ABSTRACT

The Singularity Expansion Method (SEM) was derived as a means of
interpreting/estimating responses measured during electromagnetic testing
of aerospace systems. These responses appeared to consist of a super-
position of exponentially damped sinusoidal oscillations. It was shown
that the electromagnetic response of a finite-sized, perfectly conducting
object to a delta-function incident plane wave is a meromorphic function of
the complex frequency. The physical interpretation, computational
advantages and fundamental problems associated with using the poles (natural
frequencies) of the meromorphic function to construct the transient responses
of objects are reviewed. Areas of future investigations, both for the
purpose of improving the mathematical foundations and the computational
tools are discussed.

1. INTRODUCTION

Small-sized electronic circuits, whether they use discrete components
or integrated circuits, are susceptible to malfunction or damage caused by
transient interference. The problems are particularly common in data
processing circuits because these circuits often cannot distinguish between

spurious transient and a legitimate signal and because these circuits are
designed for small switching levels to conserve power and reduce heat
dissipation problems. Logic levels are often a few volts or a few tens of
milliamperes in these circuits.

On the other hand, transients associated with EMP, lightning and
switching on buried communication cables can have peak values of tens of
kiloamperes. In order to protect electronic equipment onboard these systems
it is necessary to understand how electromagnetic waves couple into the
systems. When treating these problems it is advantageous to divide them
into three different parts, namely

" external interaction problems

" penetration problems

" internal interaction problems

The external interaction problems consist of finding the surface current
and charge densities induced by an incident electromagnetic wave on the

Electromagntics 1:361-373
0272434381/040361-13$225
Copyrighto 1I1 by Mmispher Publishing Corporation 361
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exterior surface of the considered system (aircraft, satellite, missile,
etc.). The penetration problems consist of determining how electromagnetic
energy penetrates through the exterior surface of the system. Mechanisms
that play a role in the penetration are (1) diffusion through metal skins,
(2) field leakage through nonconducting portions of the system surface,
(3) signals on lines passing through the surface. Finally, the internal
interaction problems consist of estimating electromagnetic quantities inside
the surface such as currents and voltages on wires and cables and fields in
various cavities. The solution of the external coupling problem serves as
an input to the penetration problem. The quantities obtained from the
penetration problem then form the sources for the internal coupling problem.
The singularity expansion method was developed primarily as a mathematical
tool for attacking the external interaction problem.

2. THE EXTERNAL INTERACTION PROBLEM

2.1 Experimental Results

Figure 1 shows some typical responses obtained during tests of aero-
space systems. The curve in Figure la refers to the current induced on a
wire inside an aircraft when the aircraft is exposed to a pulsed electro-
magnetic field. The late-time behavior of the curve consists of a damped
sinusoidal oscillation. The curve in Figure lb shows the current density

o.

'.4

.0

0 1 ti (us) 2

Figure la. Typical result from test of aerospace system.

12 io
44

82L
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0 10 20 30 40 so

frequency (MOz)

Figuie lb. Results of measurements on scale model of Boeing 707.



RESULTS AND UNRESOLVED ISSUES IN SEM 363

on the skin of a scale-model aircraft when it is exposed to a swept CW plane
wave. The fundamental resonance in Figure lb corresponds to the frequency
of the damped sinusoidal oscillation in Figure la. The many results similar
to those shown in Figure 1 obtained during EM testing of aerospace systems
indicate that the system response can be constructed from its natural (or
eigen) frequencies in much the same way as in network theory. In mathematical
terms this translates into showing that the response function can be
constructed from a meromorphic (in the complex frequency plane) operator
operating on the incident field.

2.2 Mathematical Proof Regarding Meromorphicity of External Response

The original proof showing that the response of a finite-sized perfectly
conducting object indeed can be constructed using a meromorphic operator
is shown in [3.9]. In this proof the analytical properties in the complex
frequency (s) plane of the surface current density I induced on a finite-
sized perfectly conducting object is investigated using the magnetic-field
integral equation. This equation can be cast in the following form:

I-( = nxLs), 1'i J x(VGxj)dS' ()

S

G(r,r';s) = (4rlr-r'I)-lexp(-s-J-1'1/c), and the surface S is finite.
From the Fredholm theory for the solution of integral equations of the
second kind it is shown that the inverse operator ( I-L)-l is a mero-
morphic operator-valued function of s. The locations of the poles of the
inverse operator (the natural frequencies) are given by those values of
s(sn) for which the homogeneous integral equation has a nontrival solution J-,

U*kksn 0 =, [1 -~~() -h 0 (2)

and Lt is the adjoint operator of L,

L.h = - J VGX (nxh)dS'

Since poles are the only singularities in the s-plane of the inverse operator
the Mittag-Leffler theorem can be invoked to find an explicit representation
of this inverse operator in terms of the natural frequencies, the nontrivial
solutions of the homogeneous integral equation and the nontrivial solutions
of the homogeneous adjoint integral equation,

[ Wi-bs)]-d (s - sn)l i m h > -

x 4h + P (s) + E(s) (3)

where L - (dLn/ds)(s ), Pn(s) are polynomial operator-valued functions of

a, andi(s) is an entire operator valued function of s.*

*E.Goursat, Functions of a Complex Variable,Dover Publications,Inc.,N.Y.1959
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In deriving (3) it has been assumed that all poles are simple poles and
that there are only a finite number of poles in every finite portion of the
complex frequency plane. This assumption has been substantiated numerically
for all perfectly conducting finite bodies investigated so far. In the case
of objects satisfying impedance boundary conditions poles of higher order
have been found.*

The proof in [3.9]is obtained by seeking solutions in the Hibert space
of elements i(r), r eS which are tangent to S, and then applying the method
of Carelman to an equation derived from (1) whose kernel is shown to be
of the Fredholm type. A simpler and more general proof can be obtained by
using the analytic Fredholm theory derived in [6.951 and [6.22].

2.3 Strength and Incompleteness of Derived Expression

From the representation (3) of the inverse operator it is observed that

* poles correspond to natural (free) oscillations of the
scattering object,

* locations of poles depend solely on shape and size of scattering
object,

* each natural oscillation has its associated current distribution
(that is the nontrivial solution of the homogeneous integral
equation).

These observations show that many transient scattering and antenna problems
involving finite-sized objects can be treated by employing the same methods
as those used in transient network and transmission-line theory.

The expression (3) also points to some of the unresolved questions in
SEM. Mathematically, the question can be formulated: "How are the poly-
nomial operators P (s) (that are introduced so that the Mittag-Leffler series==l
converges) and the entire operator E(s) determined?" In some cases, such as
scattering from a sphere and from thin wires, a series can be constructed
where these operators are explicitly determined. To make full use of the
SEM it is necessary that this issue be completely resolved. However, even
without a complete knowledge of the P (s) and E(s) the series expansion (3)
can be used to construct a time domainn representation of the transient
response valid in a certain time regime.

2.4 An Expression for Transient Response

The transient response can be obtained from the frequency domain
expression (3) by way of an inverse Laplace transform. This integral can
be evaluated as a sum of residues of the poles at s plus any contributions
from singularities in the incident field provided tflat one can close the
integration path at infinity. This leads one to investigate the inverse
operator ( -- for large values of sj.

One can show using standard techniques that

2 1-0), -21 as Re{s} +- (4)
*C.T.Tai,Complex Singularity of the Impedance Functions of Antennas,this issue.
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To obtain the behavior of the inverse operator as Isf + I, in general,
requires more elaborate analysis. Such an analysis is carried out by Jones*
using the theory of entire functions in complex variable theory. From this
theory it follows that

I< exp[(d+n)lsl/c] as Isl (5)

for any n > 0. The quantity d is the maximum separation between any pair of
points on S (sometimes referred to as the diameter of the object). The
result (5) can be interpreted to mean that the resolvent kernel R(r,r',s) to
the kernel in the magnetic field integral equation is a meromorphic function
of order one.

Let the incident field be a 6-function plane wave such that H inc(r,t) =

I 6(t -se-r/c) where e is the direction of propagation of the wave. One can
Then derive the following expression for the time history of the induced
surface current J(r,t)

J(rt) = 2nxHinc + L exp(st)ds J (r,r',s). (n'x Io) x
Br S

x exp(-se-r'/c) dS' (6)

The coordinate systems are chosen such that the object is directly illuminated
between t1 and t2.

Some results can be deduced from (4) and (6). They are

J(r,t) = 0, t < t which is in accordance with the causality
condition

I The domain of integration S in (6) can be reduced to

S' = {r':r'eS and r-r'l +e.r' < ct}

The limitation in the growth of R deduced in (5) can be used to close
the Bromwich contour in (6) in the left half plane resulting in the following
expression

(sn 0 [<B-n1
n

S-h(r')exp(-s er'/c)dS' (7)

which is valid for t > t2 + d/c. The result (7) shows that the SEN expansion
converges within a given late time regime. It still remains to derive an
SEN representation that is valid for all times.

3. CALCULATION OF THE RESPONSE OF DIFFERENT OBJECTS

The results exhibited in equation (3) can be used to determine the
response of various objects. The quantities sn and In can be interpreted
as the resonance frequency and current distribution of a natural mode.

*D.S. Jones, Methods in Electromagnetic Wave Propagation, Oxford, 1979.
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Having established the existence of this mode one can use different methods
of calculating pertinent quantities of the mode. A few cases will be
treated in this paper, namely,

* bodies of revolution,

* simple sticks,

* stick-model aircraft.

3.1 Numerical Determination of Natural Modes and Transient Response of
Rotationally Symmetric Objects

For a rotationally symmetric object as shown in Figure 2 the surface
current density J can be expanded in a Fourier series in the azimuthal
angle 0. One dimensional integral equations with the arc-length coordinate
E as the independent variable can then be formulated for each Fourier
component of the current.

This method was used to numerically determine the resonance frequencies
and current distributions of the lowest natural modes of a prolate spher

In Figure 3 we graph the locus of some of the natural frequencit
the length of the minor axis (2a) varies, but the length of the majo (is
(2b) is fixed. The quantity d in Figure 3 is one quarter of the cir'Lm-
ference of an ellipse with semimajor axis b and senrmtnor axis a. Far
poles close to the imaginary axis we note that the absolute value of the
real part of sd/c stays almost constant. This means that the Q value of
each mode is a decreasing function of a when b is fixed. For the ocher
poles we note that the absolute value of the real part of sd/c is a
decreasing function of a.

The current distribution of some natural modes is depicted in Figure 4.
The current density, Jno is so normalized that its absolute value is less

z

a x

b

Figure 2. Plane wave impinging on prolate spheroid.
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n~ .'12

k=i layer 7

k = 2 layer 6

5 -Im{sd/c}

n 4 -  6

4 3)4
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-5 -4 -3 -2 -1 0
Re{sd/c}

Figure 3. Loci of natural frequencies when 0.1 < a/b < 1. The locations
of the natural frequencies for a/b = 0.1, 0.2, 0.5, and 1 are
indicated on the curves. Arrow indicates direction in which
natural frequencies vary for increasing values of a/b.
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Figure 4. Current distribution of natural modes of prolate spheroid where
a/b - 0.1.

than or equal to one. The current distribution is an odd (even) function
with respect to the xy plane for modes where the index n is an even (odd)
integer. Moreover, the current distribution is a real function for modes
whose natural frequency is on the negative real axis in the complex s
plane. In the case of a sphere, we note that (1) the current distribution
can be represented by real functions (spherical harmonics), and (2) that
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the current distribution of modes with indices k =1, nf=2 and k£=2, n=0
are identical. For spheroids with an arbitrary eccentricity the current
distribution is almost real.

From the numerical point of view it is important to know how many
natural modes are needed in the sum (4) to maintain a given accuracy.
Figure 5 shows the variation with the number of modes of the response at
one point on the prolate spheroid. The quantity plotted in this figure is
the total axial current I(z,t) defined by l(z,t) = 2nppJ(r,t)/bH . The
time scale is chosen so that the wavefront hits the scattering object at
t= 0, the angle of incidence 8 is 300, and a/b = 0.1. The accumulated
contribution from the first 5 poles in the 2 =1 layer is considered
together with a solution labeled "all poles". From Figure 5 and other
similar results one can make the following observations

* the fundamental response alone accurately describes the induced
current for t > 10 b/c,

* the first five modes in the first layer accurately describe the
induced current for t > 4 h/c ,

* modes in the 2 > 2 layers only contribute appreciably for t < b/c

3.2 Asymptotic Evaluation of Thin-Wire Response

The response of a thin wire to an incident electromagnetic field can
be calculated using the electric-field integral (or integro-differential)
equation. The solution of this equation lends itself to an asymptotic
expansion in the "antenna parameter" Q= 2 in (wire length/wire radius).
From this solution it can be seen that the natural frequencies of a thin
wire are found to be

I -l I I I I I

-- 2
................................. ............. 5

0.4- 5~
,J .. -all

-0.4

0 2 4 6 8 10 12

ct/b

Figure 5. Time response of total current at z/b - -0.5 for 1,2,5 and all
mode pairs.

Vt
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sn = (c/0){inn - Q-01 [n(2njivr) - Ci(2nr)

+ iSi(2nr)] + 0O(-2), n-±l, ±2 . .. (8)

where r(= 1.781 . . ) is the exponential of Euler's constant, and Ci(x) and
Si(x) are the cosine and sine integrals, respectively. Also, to the first
approximation, the current distributions of the natural modes are given by

In(z) = 2raj n(z) = sin(nrz/X) + 0(-1),

0 < z < (9)

To get some quantitative information about the accuracy of tne
asymptotic expansion (8) we have in Figure 6 graphed three different
representations of the fundamental natural frequency of a straight thin
wire, namely

the asymptotic form (8) correct up to order Q- (labeled ist
order approximation),

an asymptotic form correct up to order 0-2 (labeled 2nd order
approximation),

L numerical results.

We note that for a/f = 0.1 (9 = 9.2), the natural frequencies calculated from
these different methods differ about 20% from each other. We also note that
the second-order approximation gives too large a value of the damping

constant JRe{sn} whereas the first-order approximation yields a somewhat too
large value of Im{sn}.

n

32

0O31

6o2 3.
Istode ' opo

" 0 Im{s/c}

o2 2.9

2.8de 0
2.7

, 2.6
nd I
2 de appro z0w-e 002.5

I , 2.44
-0.6 -0.4 -0.2 0

Re{sf /c}

Figure 6. The fundamental natural frequency s, for a thin wire. 
The I

natural frequencies for a/1 - 10-1 0 1 10-5, 10-4 , 10-3, 0.01,
0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 are indicated

in the figure.
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When the wire is excited by a step-function plane wave whose direction
of propagation makes an angle 8 with the positive z axis and is so polarized
that the electric field vector (strength E ) makes the angle 7T/2 -6,6 < /2,
with the positive z axis, one gets the folyowing asymptotic expression for
the induced current

I(z,t) = (8E0 /i ZsinO)U(ct-z cose) n l

sin --- [sin(w t) - (I)nsin(w t-n T 
cosO)]

exp(-Gtn 0 ' n= -0 + iW (10)

We note that the time origin is so chosen that the wavefront hits the wire
end point z = 0 at t 0.

The asymptotic expression (10) was used to numerically calculate on a
desk calculator the time history of the induced current at different positions
on the wire and at different angles of incidence of the plane wave. A
comparison between these results and those obtained from a numerical solu-
tion of a space-time domain integral equation is shown in Figure 7 for two
angles of incidence, e=300 and 900. It is observed in Figure 7 that the
asymptotic theory results exhibit faster oscillations than those of the
numerical solution. The oscillations are due mainly to the fundamental
resonance mode. An inspection of Figure 7 reveals that indeed, the funda-

/Oin 0 Asymptotic Numencol -

-E

0osn 4 -/ 1 \ 1-0

_I

• . \c t/ 2."

teomain inega equation.-/"

0

ct/t

Figure 7. Step function response of the midpoint current for a wire illumi-
nated by a plane wave with electric field strength E0 . The case
0 - 30* and 90* are shown. Also included for comparison are the

corresponding results obtained by numerically solving a space-
time domain integral equation.
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mental natural frequency of the asymptotic theory has a larger imaginary
part, implying faster oscillations than those obtained by numerically solving
the integral equation.

3.3 Aircraft Stick-Model Responses

The relative success of the asymptotic expressions for estimating the
response of a simple stick indicates that the same method cau be used
for more complicated arrangements of intersecting sticks. One example
of such an srrangement is the stick model aircraft shown in Figure 8.

Stick models are very useful for estimating the natural frequencies
and natural axial current modes of an aircraft. In a stick model, currents
of the form

I(x) = ind (x) + A sinh yx + B cosh yx (11)

are assumed on each of the elements or sticks (Fig. 8), where x denotes a
distance coordinate along a given element and A and B are undetermined
coefficients. The quantity I i denotes the current induced on a wire by
an incident plane wave whose magnetic vector is perpendicular to the wire
and is given by

-4irE

Iind(x) = yZ ne YZ Cos (12)
o a

in which Q = 2 kn [(stick length)/(stick radius)], I is the propagation

vector of the incident field, Z is the intrinsic impedance of free space,
E° is the incident electric fie~d strength, and e is the angle between the
propagation vector of the incident wave and the negative unit vector along
the stick.

Enforcing appropriate end and junction conditions on the various stick
currents leads to a system of linear equations for the unknown current
coefficients A,B, etc. The resulting equations may be readily solved to
yield the resonance frequencies and natural modes of the simple stick model.
The damping constants of the natural modes are found by calculating the
radiated power and the time-averaged stored energy of each of the natural
modes. For a simple stick, this method results in the same value of the
damping constant as the asymptotic method of the previous section does.

Figure 8. A "simple" stick model.
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This type of model has been used to calculate the first several natural
frequencies and natural modes for the Boeing 747 and 707 aircraft for
symmetric excitation. The natural modes for the 707 model are shown in
Figure 9. The natural frequencies for all three aircraft are shown in
the complex s-plane in Figure 10.

2.1MHz 4.8 MHz

6.4 MHz 78 MHz

Figure 9. 707 natural modes. The dashed lines represent the current

distribution on the aircraft segments at resonance, while the
arrows indicate directions of current flow.

0 70

0

0 50

rIm(s) MHz

0 C 30

0- 747 0
A=707 (3

C E 10

-8 -6 -4 -2 Re(s)

Figure 10. Natural frequencies for 747 and 707 aircraft.
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Figure 11. Comparison of the total current on the 747 forward fuselage.

To get some indication about the accuracy that can be obtained from
stick model calculations we consider the results shown in Figure 11. In
this figure the results from measurements made on two different scale models
of the 747 are compared with stick model predictions for the same aircraft.
It is observed that

* the resonance frequencies of the two fundamental natural modes are
predicted within an accuracy of 10%,

* the resonance peak values are predicted with an accuracy of around
20%.
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ON SOME MATHEMATICAL ASPECTS OF SEM, EEM
AND SCATTERING

C. L. Dolph, The University of Michigan, Department of Mathematics,
Ann Arbor, MI 48109

ABSTRACT

The relationship between the integral equations usually used in SEM and
the scattering matrix is examined. Alternate integral equations which exhi-
bit only the poles of the S matrix are given. Examples are used for
illustration for a solvable case.

The analytic Fredholm theorem in Banach spaces is discussed and its
advantages for numerical calculations emphasized.

The relationship between EEM, SEM and the theory of nonselfadjoint
operators is briefly discussed.

INTRODUCTION

The ideas lying behind the Eigenmode Expansion Method (EEM) appear to
have been introduced for the first time by Kacenelenbaum in 1969 [6.4].
The Singularity Expansion Met.,od (SEM) was first introduced by Baum in
1971 [3.1] and shortly thereafter independently he introduced EEM [3.4]. The
best review paper of these USSR contributions is that due to Voitovic,
Kacenelenbaum and Sivov [6.11] and that of the USA's contributions (in this
author's opinion) is that of Baum [2.2]. The most complete review of the
Russian work through 1976 is the Russian book [6.11] by the above three

* Russian authors. This book also contains a mathematics appendix by
M.S. Agranovic.

A glance at the official bibliography makes it clear that extensive
work has been undertaken and completed since these beginnings, and more will
be discussed in these preceeding.

In view of the extensive publications the author thought it might be
most useful to provide a brief guide to some of the recent mathematical
developments without excessive detail and without proofs.

This work was partially supported by the Air Force Grant 800204

Electromagnetic, 1:375-383, 1961
0272-6343/81/040375402.25
Copyright c 1961 by Hemisphere Publishing Corporation 375
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SEM

For the scalar wave equation an exterior Dirichlet problem would be
formally given by the first four of the following equations. The fifth
equation is the solution given in terms of generalized eigenfunctions which
are distorted plane waves playing the role of the plane waves used in the
Fourier integrals which occur when no obstacle is present. The functions
a(k) and 8(k) are related to the initial conditions. This last formula
has been rigorously established by Shenk [6.92] in a manner similar to that
used by Ikebe (6.38] for the quantum mechanical case. Explicitly the genera-
lized eigenfunctions are defined by (6), (7) and (8). As will be discussed
below several different methods are available for the construction of V

2--
(1) AU u

2

(2) u(x,O) = f

(3) -u (x,0) = f

(4) U = 0 on F

(5) U(x,t) = 3 3 *+(x,k)[a(k) e i k t + 8(k) e - i k t ]dk
(2f)3/2l

(6) (A + k2 )4± = 0

(7) 0 on F

(8) += eik 
" 

- + V+ (x,k)

In contrast to the operator theory approach employing the continuous
spectrum SEM employs the Laplace transform which, after a suitable rotation
in the s-plane, can be defined by (9), (10), (11), and (12). Condition (10)
is one form of the radiation condition which is need to guarantee uniqueness
of all k , Imk > (.

A ikt
(9) V(x,k) = 3 U(x,t) e dt

(10) AV + k2 V = -f

(11) V = 0 on F

(12) 'V ikV . 0( x1-1 )

The function V(x,k) is sought in terms of the Green's function as
given in equation (13). The Green's function in this equation is not the
well-known Green's function of free space but is determined by (14), (15),
(16), and its domains of analytic and meromorphicity are given by the next
two statments (17) and (18). See Dolph, McLeod and Thoe (6.25).
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(13) V(x,k) = G(xyk)f(y)dy

where G satisfies

(14) ( + k 2)G = -6(x-y) in 2

(15) G = 0 on r

(16) DG _ ikG = 0(IxI')
3lxi

(17) G(x,y,k) analytic Im k > 0

(18) G(x,y,k) meromorphic Im k < 0

Once V(y,k) has been found the solution of the original problem can
be given in terms of the inverse Laplace transform.

If a > 0.5, Im k > -b, b > 0 and

(19) IvI < c , IRe ki
1+ Ikja

Then for 0 < Y < b

U(x,t) = 2- j V(x,k)e- ikt dk

Pushing the contour down yields 16.691
n -ik.t -I I tmkn t

(20) U(x,t) = X e 3 V(x,k.) + O(e
j=l

The function V and k's which occur in this asymptotic formula
are the complex eigenfunctions and eigenvalues:

(21) AV. + k2V. = 0 in

(22) V. = 0 on FJ

V. grows exponentially in x)

Several comments are now in order:

(i)+ The estimate (19) is valid for the Dirichlet problem if the
body is (a) star-shaped and (b) non-trapping in the sense of Lax and
Phillips (6.52).

(ii) The method is not very useful since it involves the construction
of the Green's function and then the determination of its poles.

(iii) It is an open problem to find conditions when the asymptotic series
(20) will actually converge.

Instead in SEM it is usual to employ the methods of potential theory.
For the exterior time-independent Dirichlet problem corresponding to the
time dependent problem we have been considering up until now, this involves
consideration of the following set of equations whichemploy the known Free
space Green's function.
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(A + k 2)V = 0

V = -V. on r
inc

ikl2_- j

0 (xy) le

(23) V(x,k) = f #0 (x,y)d(ydo

(24) 1 + B(k) d (y) + X (x,y)d(y)d = 0

= X(k) = -1

Using the Fredholm alternative the poles are sought as non-trivial
solutions of the homogeneous integral equation (24). Those which may occur
for real k correspond to eigenvalues of the associated interior Neumann
problem. As such, as we shall see, they occur because of the double-layer
assumption and can be eliminated by other assumptions. As shown by Dolph
and Wilcox, see Dolph [6.96] they do not contribute to the scattered field
nor do they appear in it for any separable case.

The homogeneous integral equation which occurs here can be treated
mathematically several different ways. Matin [3.9] employed Carleman's
Hilbert space theory but the analytic Fredholm theorem attributed to
Steinberg [6.94] is perhaps the most convenient since it is applicable in
more general Banach spaces. Since matrix approximations are used in the
numerical calculation of the poles the choice of the Banach space of con-
tinuous functions is perhaps the most convenient. See Dolph and Cho [6.22]
for a fuller discussion. For a Hilbert space the proof of the analytic
Fredholm theorem can be found in Reed and Simon [6.84].

Analytic Fredholm Theorem - Steinberg [6.94]

Let O(B) = set of bounded operators on the Banach space and let K be
an open connected subset of the complex plane. T(K) is analytic in K if for
each k0 e K

T(k) = n (k-k 0 ) n T e O(B)
0 0

Theorem. If T(k) is an analytic family of compact operators for k e K
then either I - T(k) is nowhere invertible in Q , or else [I-T(k)]-i is
meromorphic in K

If B is a separable Hilbert space, the residues are finite rank
operators.

One way of eliminating the poles which are not intrinsic to the exterior
scattering problem is to replace the Ansatz (23) of the double layer by the
complex combination of a double and single layer as used by Brakhage and
Werner for the Dirichlet problem (6.111 and by Kussmaul (6.501 for the
Neumann problem. In the latter case additional difficulties need to be
overcome because of the high order of the singularity.

For the Dirichlet Problem the Ansatz

K.t
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(x,k) i i ) u
fr y

leads to the homogeneous integral equation:

(25) 1 (x) + ( I - (xy)1(y)dY = 0

T(X) = 1 for Re k > 0

= 0 for Re k < 0

This equation has only trivial solution for Im k > 0 and hence the only non-
trivial solutions can occur for Im k < 0 and as Ramm [6.72] has shown these
occur at the poles of a Green's function and are in fact the intrinsic poles
of SEM.

The non-trivial solutions of this last equation for Im k < 0 also agree
with the poles of the S matrix. The S matrix is generally thought to con-
tain all intrinsic properties and in fact Lax and Phillips have given two
proofs of the fact that the S matrix uniquely determines the obstacle for
the Dirichlet problem -- see Theorem (5.6) cr. [6.52], Chapter V.

For the problem here it can be shown that the V (x,h) of (8) and the

S matrix are related by the formulas: [In the last equation the integral
operator is compact].

X = r6, F kw

V (rEkw) [e_[s (e,k,w) + 0(1)]
- r -

S(k)m( m m() + Ik m(w)s (e,k,w)*dSw

The complex eigenvalues are poles of S(k)

Derivations of these formulas can be found in Lax and Phillips [6.52],
in Schmidt [6.87] for the quantum case of the Schrodinger equation and for a
very general case in Shenk and Thoe [6.91. A physical derivation of the last
formula is due to Saxon [6.86] is also contained in Dolph and Cho [6.22]. ,
This last paper also contains an appendix in which a heuristic derivation of
the mathematical theory of scattering initiated by Jauch is given.

For the cylinder (24) becomes

(a, 0  H2 (ka sin 0) (a,00 0 0
0 ) + -- a(ka) 0 d = 0

and has solutions given by

n- ins 0
2(-1 3 (ka)e

n nJ~ n (ka)H n~ (ka)

The complex roots of the Hankel function are intrinsic, those of the deriva-
tive of the Bessel function well-known to be those of the associated interior
Neumann problem.
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The Brakhage-Werner equation corresponding to (25) is

a)+ 4 27 - i .1 H (1) ka sin 0f i a 2 o(a,o+o) = 0

with a solution exhibiting only intrinsic poles; namely

(-) J (ka)ein 0

a(a,' ) n n
0 (ka) J (ka) - iJ (ka) ]

n n n

For this problem the complex eigenfunctions are

V(r,6) = e mH

where

(+ k2)V = 0, V - 0, r = a

and the scattering matrix is given, as shown by Shenk and Thoe [6.91] to be

( 2) imO
im 

H (2)(ka)a e

S(k)( aea )= _ m m
.. m H (I)(ka)m

In most cases it is necessary to resort to matrix approximation or to
have methods for the calculations of the poles. In the case of the former,
Ramm [6.72] has established the following:

Poles coincide with k. for which I + B(k) of (24)J
is not invertible. Let {f.) be an orthonormal basis

in H = L 2(F) . Then if
n

Pn ~c.f.
n 1

b.. [I+B(k)ff >

It follows that
n

b (k)cj = 0
j=l

(n)Let k , m = 1,2,3..., be the roots ofm

det b ij (k) = 0

Then the limits Lim k (n )  k exist and are the poles ofm mn

the poles of the Greens function G . Every pole of G can

be obtain in this way.

EEM

For this same time-independent Dirichlet problem the Eigenmode Expansion
method would involve the following:

A& m ,m mmm Nm~,mm mml mmm nl m
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2Ax + k = 0

* = g on r

A(k) = i eikj x-y(
41 Ix-yJ (y)dy

Ansatz

A(k)# = g on r

A(k)0n A (k) n on F
n n n

Picard method gives

< g, n >

1 n

when is this valid?

The Picard process is certainly valid for the cylinder and the sphere. In
fact as first noted by Kacenelenbaum, Sivov and Voitovic [6.111 for the cylin-
der they are explicitly given in the case of even e by

0 (0) = cos ne

ilraAnCk) = - Hn(ka)Jn(ka)
n 2 n n

H( I ) (kr) J (ka) cos nO , r > a
n n

While Dolph [6.201 appears to have been the first to suggest the use of
non-self-adjoint operators in scattering problem Agranovic in [6.1], [6.2],
[6.3] and Ramm [6.72], [6.73] appear to be the first to systematically apply
this idea. Ramm in particular considered the Hilbert space case. That is
Let

H = L2(r)
2

< f,g> = f(x)g(x) d

Then <Af,g> = < f,Ag > . This is real symmetry and A %A* i.e., A
is non-self adjoint.

Question. When is the Ansatz correct? Sufficient condition: AA*- A*A =0...(1)
i.e., A is normal . Then an orthogonal basis can be found in H = L(r).
Here (1) requires

I s i n k [ IX__-t[- I t-XI
ix_ Ltzl dot = 0

This last condition can be shown to be satisfied by the cylinder and sphere
but not for the ellipse or ellipsoid. In particular then any EEM theory results
which use the Picard process and are used to construct equivalent circuits are
suspect in general.
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Before entering into what is known in the case when the operator A is
not normal the relation between SEM and EEM when the Picard process is valid
should be mentioned.

In [2.2] Baum discussed the matrix case and showed that every zero of X(k)
was a pole. More generally:

The Relation between SEM and EEM

Theorem (Ramm). The poles of G(x,y,k) are zeros of the eigenvalues

(26) X (k) = 0 Go 
1 eikxy

n -411 TX-Y

(27) G(x,y,k) = G0 (x-y) - 0 (xsk)i(syk)dc"s

where 3G=
dn

s S eiklx-y
= 2 I x-y (y)dc

x

P + Bw =2 In

If the operator is not normal the situation is much more complicated in
general. One usually has to contend with root vectors as they occur in
the Jordan normal form. The simplest example of their occurrence is in the
matrix solution of ordinary differential equations with repeated roots. The
questions of when are the root vectors complete, when do they form a basis
are difficult in general. There is one case when there is a simple theorem
concerning completeness, namely if the operator is dissipative. An operator
A is said to be dissipative if

lm<A , > > 0 .

Many of the operators in mathematical physics are dissipative. For
example the free space Green's function is:

eih lx-yj
0= I (y)dy

One has for real k

I sink I X-y -x),Fy)dx 3y

Im~a,~>=jj 4 4(x)jyd xd

and the delta like behavior of the kernel implies that

Im<Ao,4>= flI(x)f 2d3x > 0

A rigourous proof of this can be found in Dolph (6.20).

Ramm (6.72) has established a completeness theorem for such operators
which are compact and nuclear.

Before stating his result note that if S (A) are the eigenvalues
n

of (A*A)1/2 a compact operator is called nuclear if S N(A) < *

1N

Theorem 1. If A = P + N where P is positive and compact, and N is
dissipative and nuclear. Then the root vectors of A are complete.

__t
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A simple pertinent example is given by

1L f e iklx-Yl

47 =Ijx-y1 (y)day

by taking PO= ( yI and No (A-P)O.

More information on root vectors and basic can be found in the
reference (6.34).

Finally, space limitations do not permit detailed discussion of many
topics important to the further development of this subject. These include
the weak perturbation of compact operators see (6.42, (6.55), (6.75) as
well as variational principles (6.74) and papers in press by Ramnm.

.!
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ON THE SINGULARITY AND EIGENMODE EXPANSION
METHODS (SEM AND EEM)

A. G. Ramm, Mathematics Department, Kansas State University,
Manhattan, KS 66506

INTRODUCTION

This is a brief summary of the invited talk ,riven by the
author at the Lexington (November 1980) meetinr. The puroc of
this paper is to formulate the mathematical problems imrlltant
for the SEM and EEM, to answer several basic questions vai to
draw attention to certain unsolved problems. Some new results
are also reported. The detailed presentation of the talk was
sent to the Mathematical Notes (ed. C. E. Baum) and submriltrd for
publication in the J. Math. Anal. Appi. The bibliography i ,ot
complete: only the papers in which the results mention.,i Ii. th's Iarticle appeared were included in the bibliography.

1. STATEMENT OF THE EEM4 AND SE,

Let C be an exterior domain with a smooth closed bcu.dary F,
D be the corresponding interior domain,

G ex (ik x-y) , x, Ag

a0  4fjx-y IF0(~'kgs)s n
u = fr G0 (xsk)g(s)dx. The function u solves the problem
(V2+k2)u = 0 in Q, u = f, r(Du/Dr-iku) 0 as r (1)

provided that

Ag = f (2)

If one uses the Laplace transform variable p, then p -ik, and
the half plane Rep > 0 corresponds to the half-plane Imk > 0.
Engineers [6.41] - [2.2] tried to solve (2) by the formula

g = X-= jlc fj ' where, Afj = Xjf', 1X11 _> IX2 1 > ... and

f = c~f. This can be done if A = A* is selfadjoint on 4J=l -.

H = L2 (r). The operator A in (2) is nonselfadjoint. Therefore:

1) it may have no eigenvectors (e.g. Ag = f'gdx on H = L 20,1]),

Supported by AFOSR 800204.
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2) it may have not only eigenvectors but also root vectors (6.69],
,' 6.69,

3) it is an open question whether one can expand an arbitrary
function fcH in the series of eigenvectors and root vectors of A.
Of course one is interested in the rate of convergence of the
series in eigen and root vectors and in algorithms for calcula-
tion of the root vectors and eigenvalues of A. The outlined
method (EEM) has the following merits: 1) instead of problem
(1) with a continuous spectrum in the unbounded domain we con-
sider problem (2) with a discrete spectrum on the compact mani-
fold F, 2) the resonance properties can be conveniently studied
by the EEM. A mathematical study of the EEM was originated in
[6.721, [6.73], [6.71].

In order to describe SEM consider the problem

u tt V2u in 0, ul, = 0, u1t= 0  0, utit= (3)

The solution of this problem takes the form

u = (2n) -1 f exp(-ikt)v(x,k)dk, v = fG(x,y,k)f dy (4)

where G is the Green function for problem (1),

aG(s,y,k)(5G = GO - F Go(x'sk)lds, = __ _k) (5)

G0  G 0

[I+T(k)]p = 2 3n-, T(k)p = 2 fra- p ds' (6)

We assume that fcC0(0). From (5), (6) it follow3 that G is

finite-meromorphic in k. This means that G is meromorphlc on
the whole complex plane k and its Laurent coefficients are de-
generate kernels (finite rank operators on H). If Q C R3 then
G is analytic in Im k > 0. Thus v is meromorphic in k and analy-
tic in Im k > 0. Let us assume that

Ivl c~ ),l lkl-a
lvi < c(b),l+k)-a , a > 1/2, IRe ki , Im k = b (7)

where b is an arbitrary const;

Tlm kjI + as j , Tlm kl < jIm k2j < .. (8)

where k are the poles of v.

Note that (7) (8). From (7), (8) it follows (by moving
the contour of integration in (4) down) that

u(x,t) = INl cj(x t)exp(-ikjt) + o(exp(-IIm kNit)), t -+ (9)

Here cj(xt) exp(-ikjt) = Res v(x,k) exp(-ikjt) at k kip
m -1

cj(xt) = 0(t ), where mj is the order of the pole k Thus
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we see that (7), (8) and the meromorphic character of v are suf-
ficient for the SEM of the form (9) (asymptotic SEN). It is an
open question if the series

u(x,t) = Zj1 cj(xt) exp(-ikjt) (10)

converges. The validity of the EEM was discussed in [6.69], [6.68].

2. COMPLEX POLES OF GREEN'S FUNCTIONS

We saw in Section 1 that complex poles k. are important. It

is interesting to answer the following questions: 1) how does
one calculate the poles? 2) are the poles simple? 3) do the
poles depend continuously on the scatterer? 4) Can one identify
the scatterer from the knowledge of complex poles? 5) what c-n
be said about location of the poles and asymptotic behavior of
the large poles nearest to the real axis? 6) are there any mo:.o-
tonicity or other features in the behavior of the purely imaginary
poles? 7) What are the properties or the resonant states (natural
modes corresponding to the complex poles)? 8) What is the rela-
tionship between the poles and the eigenvalues used in the EE1?

We give some answers to the above questiors. Three different
methods for calculation of the complex polec were given in[6.71-2],
[6.681and[6.74]. The first method is most genero-I. It reduces the
problem to calculation of the values k at which a certain opera-

tor of the type I + T(k), where T(k) is a compact analytic opera-
tor function, is not invertible. These k can be found bx' a

projection method. The method is described in [6.71-2] (see also
[6.68]). Its convergence is proved [6.71] The second method is a.2
variational principle for complex poles: kj are the static .ry

values of the functional

K(u) = <Vu, Vu>/<u,u , where <u,v> = fn f exp(- x 1!XI x)uvx
E-H+0 (11')

and the integral is taken over Q. In[6.74] a certain systen of
test functions was suggested but the rigorous justificati_)n of
the numerical procedure given in [6.74] is an open problem. Ii: [6.68]
a variational principle for the spectrum of compact 1o:iselfadJ, nt
operators was given. In [6.71] it was proved that the complex po]e.3
of the Green's functions are the complex zeros of the eigenvalues
of certain integral operators. This gives the third method of
calculation of the poles: first,one calculates the elgenvlues,
then one looks for their zeros. No numerical results are known
for the third method. It would be interesting to make numerical
experiments and to compare all the three methods.

It is an open question whether the poles are simple. In[6.71]
it was proved that the poles are simple if the surface is of such
shape that the operator A in (2) is normal, i.e. AA* = A*A. In
[6.73] it was ,-oved that this is so if r is a sphere or a straight
line (line.ir antenna). Recently the author gave a simple example
of a multiple pole in the problem with third boundary condition:

mm- '
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If v2+k 2 ) u = 0 in r :x= > 1, 3u/Dr - 2u :os a on jxj = 1,

r(2 u - iku) 0 as r , then k = -21 is a pole of order 2 of

u(x,k)o Generically multiple poles are exceptions because small
perturbations of the shape of the scatterer can destroy multiple
poles. On the other hand, since the poles depend continuously on
7 (see[ 6.68] for precise definitions and proofs) it seems possible
that by continuous variation of r one can make a multiple pole
out of 2 simple poles by merging. Nevertheless, no proof is known
that the Green's function of the exterior Dirichlet Laplacian has
multiple poles for some F.

We have already mentioned that the poles depend continuously
on F. It is not known whether the set of complex poles deter-
mines the scatterer uniquely. A discussion of this question is
in [6.76land [ * ]. Some information on location of the poles is
available: in [6.70] it was proved that the domain {Im k < 0,
1im k i < aloglRe ki + b, a > 0) is free from the complex poles
of the Green's function of the Schrodinger operator with a com-
pactly supported potential; in[ 6.54] a similar result was proved
for the poles of the Green's function of the exterior Dirichlet
Laplacian; in [6.5] some heuristic arguments are given to show

that the domain {Im k < 0, (Im kf < alRe ki1 / 3 + b, a > 01 is
free from the poles of the Green's function of the exterior
Dirichlet and Neumann Laplacians provided that F is strictly con-
vex and smooth; if F is not smooth (say, F is a polygon) then there
exists a series of poles k. such that

SIm kj = 0(logjRe jl) as j -. [6.6].

In [6.531it wac proved that there exist infinitely many purely
imaginary poles of the Green's functions of' the exterior Dirichlet
or Neumann Laplacian and

cR< n li inf y-2 N(y) < lim sup y N(y) < cR 2

where c = 1.138370 ....... , N(y) is the number of purely imaginary

poles with jIm kj1 < y, the obstacle is star-shaped (this means

that all points of F can be seen from a point in D) and Rl, R,

are the radii of spheres inscribed in and circumscribing D,
respectively. It is pointed out in [ *] that if D2 = qnl, q > 1
then y(l) = q(2) where -iy (-y 2 ) ) are the poles of the

Green's function of the exterior Dirichlet Laplacian in

Q = R 3\D, j = 1, 2, where R 3\D denotes the complement

to D in R 3. Therefore in this case N2 (y) > N1 (y) and
(1) (2) Uj)

yl) > y1 2, where y1 are the moduli of the purely imaginary

poles with minimal moduli. In [6.53] Theorem 3.5 on p. 751 says
that N2 (y) < N1 (y). This statement contradicts: 1) the above

argument, and 2) the case when D 1 and D2 are concentric balls and

one can calculate N1 (y) and N2 (y) for y 1 1 and verify that
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N2 (y) > N1 (y). The argument in[6 .53] can be used if the assumption
0 C 0s is replaced by the assumption 0 DO s . We mention this

because in the literature one can find references and citations
of Theorem 3.5 from [6.531 in its wrong form. Using arguments from
[6.53] and assuming that D., j=l, 2 are star-shaped and that

D1 C D2 C D3, one can see that N1(y) < N2 (y) < N3 (y). Here we

used the corrected version of Theorem 3.5 from [6.53]: if D C D.

and D 1 is star-shaped, then N1 (y) < N2 (y). This theorem is actu-

ally proved in [6.53] so that the misstatement of Theorem 3.5 in
[6.53] is just a misprint.

Concerning the behavior of the resonant states, that is the
solutions of the homogeneous problem (1) for k = a - iy, y > 0,
f(x) = 0), satisfying the asymptotic condition

u = JxKl exp(iklxf)j =0 lxi-Jfj,fj fj(n,y), n = x • jx1 -1 , (11)

at infinity, one can prove the following proposition: if
u exp(-yxJ)I xJ _J 0 as -xl - - then u - 0. From this it follnws
that the resonant states (scattering modes) correspcnding to a
complex pole k = a - iy grow at infinity exactly as

O(exp(yixl)Ixl - . See also [6.43] Theorem 3. The relationship
between SEM and EEM is given in the following proposition([6.71-21,
[6.68]): the set of the complex poles of the Green's function of
the exterior Dirichlet Laplacian coincide with the set of complex
zeros of the eigenvalues X n(k) of the operator A defined in (2).

It is not known at this time whether the order of a pole can be
calculated from the multiplicity of zeros. One can construct
other operators with the eigenvalues vanishing at the complex
poles (6.68].

3. "ORTHOGONALITY" OF THE EIGENMODES AND RESONANT STATES

By eigerimodes (EM) we mean the eigenfunctions of the opera-
tor A defined in (2). This is a nonselfadjoint operator on

H = L2(r) with the property [Af,g] = Lf,Ag], where ff,g] = (f,g)

SFfg ds, (-,.) is the inner product in L2 (r), the bar denotes

t complex conjugation. Suppose that Afj = Xjfj, [fjlf] I 0, j =

1, 2,... and the set {f I forms a basis of H. Then any fEH can

be represented as f = Jl and cj = Lf,f 1]. This can be

proved exactly as in the case of orthogonal Fourier series if one
takes into account that Ef ,f ] = 0 for j # m. The last formula

jm
follows from the identity 0 = [Afj1 fm ] - [fjAf I = (AjAm)

[fj,f mj if Xj # "X If X = Xm one can choose f1 , fm so that

[fj ,fm = 0 for J # m. Thus the coefficients in the EEM can be

easily calculated. If the root vectors are present the formulas
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for the coefficients in root vectors can iso be calculated ex-
plicitly [ * ].

"Orthogonality" of the resonant states corresponding to dif-

ferent complex poles kl, k2 holds in the following sense:

<u(x,kI), u(x,k 2 )> = 0, where <,> is defined in (10') (See [6.74]

and [ * ] for detaile..).

4. NONSMOOTH BOUNDARIES

The usual proof of the meromorphic nature of the Green's
function of the exterior Laplacian requires smoothness of F.
Indeed, it is based on the integral equation (6) and on the theorem

about the meromorphic nature of the operator (I+T(k)) - I [6.80-3]. If
this theorem it is assumed that T(k) is a compact operator func-
tion analytic in k. If the surface F has edges or conical points,
the operator T(k) in (6) is no longer compact. Nevertheless the
theory is still valid provided that there are no cusps on F.
This follows from the proposition (see [ * ] for details): if
T(k) = T + Q(k) is an operator function on a Hilbert space H,
where Q(k) is analytic in k for kcA, where A is a connected open
set in the complex plane, ITIess < I and I + T(k) is invertible
at some point, then (I+T(k)) - 1 is finite meromorphic in A, (finite

meromorphic means that the Laurent coefficients are operators of
zfiite rank). By Tiess we mean inf IJ-KlI, where K runs through

the set of all compact operators on H.

It is known [6.12] that IT(0)less < I provided that th- re ire

no cusps on F. One can now apply the above proposition and con-
elude that vi in (6) (and therefore G; see (5)) is meromorphic and
its Laurent coefficients are degenerate kernels.

5. EXAMFLES, COMMENTS

1. A symmetric (with respect to the form [f,g] defined in section
3) nonselfadjoint operator can have root vectors. Example:

A ili) [x,y] = xly' + x2Y 2 . (A-AI) - I has a pole of order 2

at X = 0. The corresponding eigenvector is (1) and the root

vector is 1

2. The fact that the algebraic problem to which an original inte-
gral equation was reduced (e.g. by a projection method) has eigen-
values does not guarantee that the original equation has. (See
[6.68], (6.691 and[ * I for details and sufficient conditions under
which the eigenvalues of the algebraic problem converge to the
eigenvalues of the or1ginal problem.)

3. The operator (I+T(k))- can have multiple poles and be dia-
gonalizable (i.e. T(k) has no root vectors).

mmmmFlmmmmlln l mn ml ( mmm mm m
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Example: T(k) + k 2 ) (I+T(k))- = 0
0k0 (+k2,

- I

k = 0 is a pole of order 2.

4. There exists an operator with the root system whi.'h forms a
basis of H but under a different choice of the root vectors the
root system of this operator does not form a basis -,!' H (see F *
for an example).

5. The set of complex poles of the Green's fu.ctiun of the
Schradinger operator does not define uniquely the p, tential if
ther- are bound states [ *

6. If z is a complex pole of crder m of (I+T(k)) - , T(k,c) Is
compact and analytic in k and c for {ilk-zl < a, jIc < L'} and

T(k,Q) = T(k) then the poles z(c) of (I+T(k,c)) - can have a
branch point at c = 0 and ord z(c) < M. ..orecver s(c) --n te

I /r
* represented by Puiseux series, i.e. by a series i powers of c

where r is some integer (see [ * ] for details).

7. The multiplicity of the complex poles is not equal to the
order of zeros of eigenva'ues, generally speaking.

It was proved in [6.72](see also[ 6 A9]) that the set of complex
poles coincide with the set of complex zeros of the elgenvalues
of certain integral equations. In the case we are concerned with
in this paper one can have in mind the eigenvalues of the equa-
tion [I+T(k)] uj = )j(k)uj, j = 1, 2 ..... it was an -,pen question

whether the orders of the zeros of X (k) are equal to the multIi-

plicities of the corresponding poles. We show by presentin:r an
example that this is not so in general. Let us take as I + T(k)
a finite dimensional operator with the following matrix

. 2
! A(k) = . We have X (k) = X(k), A- (k) =

010 ) -lk)",

If k(z) = 0 and m is the order of the zero, Lhen z is the pole

of A-1 (k) of multiplicity 2m. It is clear from this exam[' that
the order of zeros of the eigenvalues will coincide with t:e ,
multiplicity of the corresponding poles iff A(k) is diagonalizable,
that is A(k) has no root vectors. This example is sufficiently
general because for a compact T the eigenvalues X # -1 have

finite algebraic multiplicites and the corresponding root spaces
reduce I + T(k), so that in the root spaces I + T(k) is a matrix
operator.

8. Using the ideas given in [6.68] the author proved convergence
of the T-matrix approach in scattering theory, widely used in
practice.
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9. A variational principle for complex poles

In section 3 it was mentioned that the complex poles of the
Green function occur at the complex points k at which the homo-
geneous equation (2) has a nontrivial solution. Let H denoteq

the Sobolev space Wq(r), and Ifiq denote the norm in H . Consider

the variational principle F(f) = IAf 1 = min, Ifl0 = 1. If {f }

i a H0  and f(n) n
is a basis of H = cf., then the problem

j=l
n

F(fn)) min, Ifn 10 = 1 yields: I a.m(k)cm = 0, l< j <
n 2 m=1 m n)
I Icj > 0. Thus (*) det a. (k) = 0. Let k(n) be the complex

j=l i jm S

roots of (*). Then it can be proved that the set of the complex

limit points {k I of the set {k (n) I coincides with the set of the
5 S

complex poles of the Green function. This a new result. The
functional F(f) is real valued in contrast with the functional
K(u) in (10').

Problems

1) Is it true that the root systems of A(k), T(k) form a Riesz
basis of H? It is proved that these systems form a Riesz
basis with brackets (see [6.68] for a proof and definitions).
The author thinks that the answer is no.

2) Is there a relation between the order of a complex pole and
the multiplicity of the zeros of X n(k)?

3) Can the scatterer be uniquely identified by the set of com-
plex poles of the corresponding Green's function?

4) Prove that there are infinitely many complex poles k. with

Re kj 1 0 (in diffraction problems and noncentral potential

scattering).

5) Are the complex poles of the Green's function of the exterior
Dirichlet or Neumann Laplacian simple?

6) Make numerical experiments in the calculation of th., complex
poles.

7) Prove convergence of the numerical procedure for calculation
of the complex poles suggested in [6.74].

8) Find a theoretical approach optimal in some sense to approxi-

mate a function f(t) by the functions of the form

f m 1mJ" Here the numbers cmj , mi k

are to be found so that fN will approximate f(t) in some

- -, Nn-~ .:... .. . . .
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optimal way. Currently some methods (e.g. Prony method) are
used in practice, but they art not optimal. This problem
seems to be of general interest (optimal harmonic analysis
in complex domain).

9) When can SEM in the form of (10) be justified?

Conclusion

We hope that it was shown in this paper that:

1) EEM is justified (in the generalized form of expansion in
root vectors).

2) SEM is justified in the asymptotic form (9).

3) Numerical projection method for calculation of the complex
poles is justified.

4) There are many interesting and difficult open problems in
the field.

5) Numerical results and experiments are desirable.

Reference

*) Ramm, A.G., Mathematical foundations of the singularity
and eigenmode expansion methods,J. Math. Anal. Appl. (1981).
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EVIDENCE THAT BEARS ON THE LEFT HALF PLANE
ASYMPTOTIC BEHAVIOR OF THE SEM EXPANSION
OF SURFACE CURRENTS

L. Wilson Pearson, Department of Electrical Engineering, University
of Mississippi, University, MS 38677

ABSTRACT

The issues which have persisted in connection with the so-called "entire
function contribution" and in connection with alternative coupling coefficient
form interrelate closely with the large s asymptotic behavior in the left half
plane in SEM representations. To date, no generally applicable rigorous in-
formation has been gleaned about this asymptotic behavior. On the other hand,
the specific scattering geometries of the sphere and the wire loop yield
analytic solutions which can be analyzed asymptotically. Further information
can be discerned on a numerical basis or through a procedure based on the
discretization of an integral equation. All of this evidence form a mutually-
consistent picture of the asymptotic behavior in question. The principal con-
clusion which results is that the observed behavior taken with the Mittag-
Leffler-type expansion theory for complex functions leads to SEM representations
which are free from entire function constituents.

1. INTRODUCTION

An issue which has persisted throughout the development of the Singularity
Expansion Method (SEM) representation over the last ten years is a question of
existence of an entire function constituent in the SEM representation for current
on a scattering object. Baum discusses this issue in each of the early papers
on SEM (c.f. (2.111) as do Marn and Latham in their rigorous presentation [3.8].
The including of the "possible entire function" in the SEM representation ap-
pears to have emerged through an appeal to what we shall term an "inLerpolative"
Mittag-Leffler theorem (c.f. Markushevich2). The summand in the represeutation
in the theorem includes polynomials which are introduced by necessity to render
the series convergent. Baum chooses to lump formally the sum of all of these
polynomials into a single entire function term which he appends to the SEM
pole series. To separate these polynomials from the poles to which they
correspond jeopardizes, in practice, the convergence of the series.

Bracketed references are given in the SEM bibliography appearing elsewhere in
this journal.

2A. I. Markushevich, Theory of Functions of a Complex Variable, Vol. 2

trans. R. A. Silverman, Chelsea, New York, 1977, pp. 299-301.

Electromagnetics 1:396-402
02724343/ 1/040396482.25
Copyright o 1981 by Hsmisphere Publishing Corporation 306
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In his development, Baum also introduces an arbitrariness in the SEM
representation through the introduction of a "turn-on time" at which the pole
series is allowed to begin contributing to the representation of the surface
current induced on a scattering object. If this turn-on time is chosen later
than the time at which the actual response begins then the entire function
contribution to the current representation in the time domain must "fill the
gap" between the time the response begins and the time that the pole series
contributions in the time domain are allowed to contribute to the representa-
tion.

An alternative to choosing a turn-on time in the construction of the
SEM representation is to recognize that the surface current response in a
scattering problem is unique in the Laplace transform domain for any value of
the complex frequency vaiable s which lies on the Bromwich contour. By virtue
of its analytic continuability, this representation is unique throughout the
complex s plane. The Laplace transform inversion procedure enforces the correct
turn-on time of the time domain contributions arising from pole constituents
in the transform domain through the large s asymptotic behavior of the current
function. This asymptotic behavior is, in general, not the same in the right
and left halves of the complex s plane. Through an appeal to Jordan's lemma
one either closes a Bromwich contour with a semicircle to the right or to
the left obtaining, in the former case, a zero contribution to the current
solution or, in the latter case, residue contributions at the poles of the
transformed current response. This feature of the Laplace transform inversion
procedure is discussed in the SEM context by the author and others1 . The free-
dom of choice which one is allowed in the construction of the SEM coupling
coefficient as related by Baum in [2.1] appears to be a result of a time during
which one is free either to close to the right or close to the left in accord
with the asymptotic behavior of the transform current. The particular choice
of time at which one switches from a right half plane closure of the Bromwich
contour to a left half plane closure dictates a particular form of coupling
coefficient.

Mittag-Leffler's work in the expansion of functions in terms of a pole
series provides alternative representations depending on the knowledge avail-
able about the function to the represented 2,3. We examine a particular
theorem due to Mittag-Leffler which takes ad\intage of a knowledge of the large
s asymptotic behavior of the function to be expanded in the construction of
the residue series representation of that function. Under conditions that
the function grow asymptotically at an algebraic rate in s, at most, the
representation can be cast with only the polynomial constituents in the series
as entire function elements. Subsequently, we explore the presently-available
evidence about the large s asymptotic behavior or surface current on a
scatterer in light of the hypothesis of this "constructive" Mittag-Leffler
theorem. In particular, we examine the large s asymptotic behavior of the
reciprocal eigenvalues in the expansion of the solutions of electromagnetic
scattering from a perfectly conducting sphere and from a thin conducting

L. W. Pearson, D. R. Wilton and R. Mittra, "Some Implications of the Laplace

Transform Inversion on SEM Coupling Coefficients in the Time Domain," to be
submitted to Electromagnetics.

2G. Mittag-Leffler, "Sur La Representation Analytique des Fonctions Monogenes

Uniformes "une Variable Independante," Acts Math. t. 4, 1884, pp. 1-79.

3A. R. Forsythe, Theory of Functions of a Complex Variable, Vol. I, Dover,
New York, 1965, ch. VII.
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circular loop. We also cite a result due to WiltonI which, though not rigorous
in its development, provides a basis of conjecture that the transform of the
surface current density function for a convex perfectly-conducting scatterer
is, in general, asymptotically algebraic in the right half of the Laplace
transform plane and decays exponentially in the left half plane.

2. MITTAG-LEFFLER THEOREM BASED ON ASYMPTOTIC KNOWLEDGE OF THE FUNCTION

The following theorem is an expanded statement of a theorem due to Mittag-
Leffler. Its proof may be found, among other places, inWhittaker and Watson2 .
It is stated here in an expanded form in two senses: first, we expand it to
vector valued functions; and second, we include the possibility of algebraic
growth with large s on the part of the function. The first extension is, of
course, a trivial one and the second one is outlined by Whittaker and Watson.
We also observe two corollaries which relate to this theorem.

"Constructive" Mittag-Leffler Theorem

Let J(r,s) be a vector-valued function analytic in s with simple poles

{si}, isl-Is2 .... < ISnL , and with corresponding residues {Ji(r)}. Let
{CmJ be a sequence of circles centered at s= 0 with radii {Rm} constructed so
the Cm embraces the first m elements of {sii and such that Cm pases through no
poles. If there exists an integer p> 0 and a (uniform) bound M such that
Is-pjl <M on Cm as m- , then J(r,s) has the representation

j(rs) . +i +i+ s * s sn dnj(rO) (1)
i si s j+1 n-0 ds

and this representation is uniformly convergent in s.

Corollary If J(r,s) decays such that Is :(r,s)I <M on Cm as m-* then J(r,s)
has the representation

J J/(s-s) ,  (2)i

which converges uniformly in a.

Corollary If sp J(r-,s)j - 0 on C as m- for-p>-l, then
m

-- dPJ (, 0)

I -(r) dsP ' p -(

s+l 0 , p=-l

1D. R. Wilton, this issue.

2E. T. Whittaker and G. N. Watson, A Course in Modern Analysis, Cambridge, 1927,

pp. 134-135.
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The effect of the above-stated theorem is, for the class of functions
defined by the hypothesis, to obviate the need for an explicit entire function
in the SEM representation apart from the convergence polynomial terms in the
pole series. Beyond this, the conditions for uniform convergence of the pole
series are stated in terms of the polynomials included with each pole term.
To construct the series in such a way that it is uniformly convergent renders
its termwise inversion to the time domain valid, so that the result is of some
practical consequence. The first corollary admits the case of a function which
falls off at least as fast as 1/s asymptotically-a case which cannot be
handily incorporated into the theorem itself or the associated proof. The
second corollary imposes a condition on the summed pole and residue values
for terms of order higher than the asymptotic order of the function-a con-
straint which has proven useful in the case of computations involving the wire
loop [4.54].

3. AVAILABLE INDICATIONS OF ASYMPTOTIC BEHAVIOR SCATTERING PROBLEMS

3.1 Introduction

To the author's knowledge, there is no rigorous information available re-
garding the large s asymptotic behavior of the surface current for a general
scattering problem. Since, the high frequency asymptotic limit, localization
effects arise, one might be encouraged toward gleaning the needed asymptotic
information from physical optics principles. Manin and Latham comment on this
in [3.8] and conclude that the physical optics current representation does not
apply in the left half of the complex plane. It does lead to the conclusion

that the current is asymptotically constant in the right half place.

With asymptotic representations failing, we are forced to turn to specific
geometries and to discrete approximate representations of solutions to gain any
insight about the applicability of the foregoing theorem. The SF24 representation
for an electromagnetic scattering problem has been obtained exactly in only two
cases to the best of the author's knowledge: the perfectly conducting sphere;
and the perfectly conducting wire loop. The former solution is completely
rigorous since the sphere geometry is a separable one. The wire loop is analyt-
ically tractable with the one approximation that the wire is sufficiently thin
that the current may be assumed to be uniformly distributed around the exterior
of the wire cross-section.

In each of these cases the solution may be written in terms of a complete
uniformly-convergent eigenfunction expansion, plovided the source of excitation
is located away from the structure in question. Since the solution is written
in terms of a uniformly convergent series the series may be integrated termwise
when pefrigthe Laplace inversion to the time domain. As a result we pay
attention to the large s asymptotic behavior of the reciprocal eigenvalue factors
which appear in these terms.

3.2 Sattering from a Sphere

The surface current on a perfectly conducting spherical scatterer of radius

centered at the origin of a coordinate system satisfies an integral equation
of the form

1 Uniform convergence may be demonstrated via the large index behavior of the
summand.
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Tr TT

G(641'4's) j(,','s)a2sin6'de'd0' =T(8 (0,4,s), (4)

where G(~l'p)is the dyadic kernel, 3 (O,O,s) is the Laplace transform sur-
face current on the sphere T is a dyadic which selects the tangential component
of the Laplace transformed incident electric field Einc(6,4 ,s). Tai provides an
expansion of Z! in terms of spherical wave functions. His expansion, when par-
ticularized to r= r'- a, as above, constitutes an eigenfunction expansion for
n in the eigenfunctions of the integral operator in (4)1. From this expansion,
we may proceed to resolve (4) as follows.

{TM ~ ~ T I N ('~'
n~~~~m( N(O4) , ) Einc~ e 41S)a2 snded

ATE(s) Mm =01 f f M(~4' O 4)u 2ineded)} (5)

n -iTT

where M and N are normalized eigenfunctions of the integral operator in (4) and
where the eigenvalues are given explicitly as

= ~ ~ un 1r=a (a

and

JTE -_p sa in (-jsa/c)h ()(-Jsa/c) ,(6b)

n 2c n n

with c = (PE) -~=/tadP and c the constituitive parameters of the medium.

We may use the large argument asymptotic form for the spherical Bessel
function to deduce, with a bit of algebra, the following asymptotic behaviors
for the reciprocal eigenvalues appearing in (5).

(I ,in r.h.p.

I/TM 4 [n /4 1 , (7a)
n T12s/

%- n /+ e~s/ in l.h.p.

while
((1 ),+l i r.h.p.

hAXTE ,~4 n(7b)
n n 1

2a/c
e in l.h.p.

I .T. Tai, Dyadic Green's Functions in Electromagnetic Theory, Intext,

Scranton, PA, 1971, pp. 168-181.
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It is seen that the reciprocal eigenvalues for both the TE and TM constit-
uents of the surface current solution for the perfectly conducting sphere are
asymptotically constant for large s in the right half of the complex plane, and
they decay exponentially in the left half plane. Therefore they obey the hypo-
thesis of (1) with p= 0. The eigenvalues possess a collection of zeros associ-
ated with the spherical Hankel function in their respective forms as well as a
collection of zeros associated with spherical Bessel function factors. It is
well known that these zeros of the Hankel function factors correspond to the
exterior (radiating) resonances of the structure and that the (non-radiating)
interior resonances manifest the pure imaginary zeros of the Bessel function
factors [3.1]. It follows from the reciprocity theorem that only the exterior
resonances are excited by a source lying exterior to the sphere.

Application of the "constructive" Mittag-Leffler Theorem of (1) therefore
yields a scattering response of the form

TETl
J(8,M,s) R T n Is- +RI.- mn(0,)nTm}n,m, i ni mn

+ RTE 1 ZPSi T+ I A mn( )m} n (8)

ni~ TE .1mn mn(8
5ni

TE, TM TEwhere {R g and {R } are the residues associated, respectively, with (s.} and
{sn}-the complex-valued zeros of XTE(s) and XTM(s). The n factors are the
so-called coupling coefficients

rm ff- 0 mne(0 ,) O, ,sni )a2sinOd0d . (9)

The derivative of the reciprocal eigenvalue vanishes at s = 0.

3.3 Scattering from a Thin Wire Loop

The current on a circular loop of radius b formed from a wire of radius
ab b may be expressed in an eigenfunction expansion in terms of the eigen-
functions of the thin wire electric field integral equation for the loop1

iT

Xnl(s) e-jn e n  E01 ( ,s)do', (10)
in

where

X n(s) = r an (s)/j2b . (11)

The an(s) functions art relatively tedious combinations of modified Bessel
functions and Lommel Weber functions (c.f. [4.54]. The series (10) is observed
to be uniformly convergent based on the large n asymptotic behavior of the series
terms as analyzed in King's exposition. Consequently the expansion of the series

IR. W. P. King, "The Loop Antenna for Transmission and Reception," ch. 11 in
Antenna Theory, R. E. Collin and F. J. Zucker, eds., McGraw Hill, New York, 1969.
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in poles of the Xn may be viewed on a termwise basis as in the case of the sphere.
Umashankar and Wilton have done a careful analysis of the large s asymptotic
behavior of the an which we require in order to analyze the An. They observe
the large s behavior of an(s) to be

an(s) ' -Jsb 2 Zn(2b/a) - 2y - 2 tn(-jsb/c)

--j1+ (l)n+l Jsrc)c e(2sb/c+j i/4) ([4)

so that, in particular,

I -b tn(-jsb/c) in r.h.p.
an(s) "' (15)

S(_)n+l b s -2Sb/c

( (f), in l.h.p.

Thus, in (10)

(-jsb/c) in r.h.p.

i/a n(s) 2 (16)

+ 2Sb/c .h.p.

We observe, again, that the reciprocal eigenvalue factors in the current
expansion and decay exponentially in the l.h.p. In particular, the hypotheses
of the corollaries in Section 2 are honored so that

'- i eJn f nEc ( ,s)do' (17)l(,)= 2T S-Snei E
n,i ni

and

I rni 0 ,(18)
i Sni

where

ni

and {Sni} are the zeros of an(s). The latter observation has been reported by

Umashankar and Wilton [4.541, as well.

Before concluding the discussion of the loop, we should comment on a
potential weakness in the foregoing argument which is intrinsic to the thin
wire -- roximation leading to (10). Namely, the wire cross-sectional dimension
a must )! electrically-small-a<< c/Is i. Clearly, as s--, this approximation
fails, so that our asymptotic argument is non-rigorous.

3.4 Speculation Relative to a Convex Scattering Object

Wilton has used an approximate approach to the solution of the electric

field integral equation in an effort to observe the large s behavior of the
solution. He uses a method of moments procedure to cast the integral equation
as an approximating matrix equation of the form
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[rmn][Jn] = [Em] (19)

and observes the asymptotic behavior of the formal solution

[J n] = [Fmn]-l[ m] (20)

by expanding the inverse in (20) through the use of Kramer's rule1 . By so doing
he is able to isolate explicitly the asymptotic behavior of the inverse matrix
for s in the right half and the left half plane. In the course of the develop-
ment he is forced to impose the condition that the body be convex in order to
carry out this asymptotic analysis. Because of the approximate character of
this approach it is not clear whether this convexity condition is a hypothesis
essential to the discerned asymptotic behavior or whether it is an artifact of
the approach. Under the convexity assumption, he concludes that

P(s) , in r.h.p.

[m
]
%[Cm] (21)

esL/c, in l.h.p.,

where P(s) is a finite polynomial in s and where L is the maximum dimension of
the object.

We may conclude from (21) that the expansion (1) applies to [Jm] with some
p>0. In other words, no explicit entire function except for the convergence
polynomials is required in the representation. Certainly, the discretization
of the integral equation to the matrix form (19) discards rigor at the point
of departure. On the other hand, the accuracy of matrix formulations for engi-
neering purposes is well understood by numerical methods practitioners,and a
residue expansion of the solution (20) is quite satisfying over the frequency
range where the original formulation (19) is "satisfactorily" accurate. It goes
without saying that "satisfactory" often involves subjective judgement. (A
similar argument could be used in connection with the thin wire approximation
for the loop in the preceding example.)

4. CONCLUSIONS

The application of the Mittag-Leffler Theorem stated in Section 2 is a
fruitful basis upon which to base frequency domain forms of the singularity
expansion. It is not clear, however, how one might draw generally applicable
conclusions for classes of scattering objects. The approach due to Wilton
based on the moment method is likely to satisfy some engineering-users of SEM.
His approach has not led, to date, to a means of fixing the polynomial order p.
That a transcendental entire function, at least, is precluded seems somewhat
helpful, however. The observations of Marin and Latham [3.8] based on physical
optics indicate that p= 0. On the other hand, a high frequency asymptotic
approach which yields the necessary inforration would, indeed, be gratifying.

The specific cases of the sphere and wire loop scatterers work in harmony
with the moment method approach to admit the conjecture that, at most, polynomial
entire function constituents enter into the singularity expansion in the frequency
domain for finite extent perfectly-conducting objects in lossless media. The
verity of this conjecture will bear favorably on emerging frequency-domain
applications of SEM as well as obviate the concerns with the approximation of
entire function constituents in SED-based eluivalent circuits.

ID. R. Wilton, op. cit.



LARGE FREQUENCY ASYMPTOTIC PROPERTIES
OF RESOLVENT KERNELS

Donald R. Wilton, Department of Electrical Engineering, University of
Mississippi, University, MS 38677

ABSTRACT

A conjecture on the large complex frequency asymptotic behavior of the
resolvent kernel of the electric field integral equation operator is presented.
The conjecture is based on a detailed examination of the corresponding large
frequency behavior of a matrix approximant to the operator. From this analysis
it is concluded that the resolvent decays exponentially on a sequence of con-
centric circular contours of increasing radius threading between poles in the
left half plane. The decay rate is proportional to the distance between ob-
servation and source points.

1. INTRODUCTION

In this paper we present a conjecture concerning the asymptotic behavior
of the resolvent kernel of the electric field integral equation for large com-
plex frequency s. This asymptotic estimate is needed for deriving correct
singularity expansion representations as well as for determining the proper
right or left half plane closure times of the Bromwich contour in the Laplace

* inversion integral.' However, attempts to rigorously determine this estimate
have not met with success to date. Our conjecture is suggested from an
examination of the asymptotic behavior of elements of a matrix approximation
to the resolvent and by the fact that both the matrix approximant and the resol-
vent kernel play similar roles in the solution of a scattering problem formu-
lated as an integral equation. It is presented in the hope that it may stimu-
late a more rigorous determination of the correct asymptotic behavior.

2. DERIVATION OF LARGE FREQUENCY ASYMPTOTIC BEHAVIOR OF MATRIX APPROXIMANT

Let S denote the surface of a closed, perfectly conducting, convex
scatterer. The problem of scattering by S can be formulated in the Laplace
transform domain in terms of the integral equation

JT'(~r~s) J(r',s)dS' Z Et• .S " iiant ( ,S)(1

S

'L. W. Pearson, this issue.

Electromagnetics 1:403-411
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where E is the incident field, J is the induced surface current density, the

kernel r is the free-space Green's dyadic, r and r' are observation and source
points, respectively, on S, and s is the transform variable. The solution of
(1) may be formally expressed as

j(ir,s) f (r,rs). E tan~r,~S (2)

S
-1

where F is the resolvent kernel. For a numerical solution, (1) may be
approximated by a matrix equation of the form

[Zmn(s)][In(s)] = [Vm(s)] (3)

2
obtained by the method of moments. The column vector [I I contains the
coefficients of the expansion through which J is approximated via a finite set
of basis functions f as

n

N
J(r,s) (S)fn(r ) = [In(s)]t[n]. (4)

n=

The solution of (3) can be expressed in terms of the inverse matrix
[Y nm] = [Zmn ]- 1 as i

tln(s)] = [Ynm(s)[Vm(s)] , (5)

which in turn yields J through (4).

For an arbitrarily-shaped surface S, the approach of Rao et al. provides
a suitable numerical procedure. 3 In their approach, S is approximated by
planar triangular patches, and the basis functions fn are defined on pairs of
patches having in common edge n, whose length is Zn" The dipole moment of each

basis function ?, is PnPn To establish the connection between the matrix

elements Ynm(s) and - (r,r',s), we suppose that the number of edges N in
the triangulation of S is allowed to approach infinity in such a way that the
longest edge length approaches zero while each patch normal approaches the
local normal of S. We further specify that the centers of edges m and n
approach specified points rm and rn while the orientation of the dipole moments
of associated basis functions fm and fn approach the direction of specified
unit vectors m and Pn, respectively, as N --. Then it is easily shown that

Z n(s)
Pm r(r inS) "P 

= lim (6)
m n N- mnPmPn

If the numerical procedure converges, i.e., if the right hand side of (4)

2 Harrington, R. F., Field Computation by Moment Methods, New York: Macmillan,
1968.

3 Rao, S. S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic Scattering
by Surfaces of Arbitrary Shape," IEEE Trans. Antennas Propagat., March 1982.
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approaches the true surface current J as N-, then a similar relationship
Z--1

exists between f and [Ynm]" Our procedure will be to estimate the asymptotic
behavior of Ynm for large s as N -- and to assume that the corresponding result

holds for -

Before proceeding, we summarize some particular features of the approxima-
tion scheme necessary to the development. The matrix elements Zmn may be
written as

R -c+ -c-
% I o_ _ _ _ Cm R m n [

Z = 4 e j. P +L dS'

L T + T- m m

n n

R Tn
+  T - m m

cnmn- R

= P (s) e c nr (7)
n

where no and c are the intrinsic impedance and the velocity of light in free
space, respectively; R.n is the distance between nodes m and n, the center
points rm and rn of edges m and n, respectively; TA are the two triangles
common to edge n; 4 is the distance between the centrold of TA and a source
point r ' in Tn or T-; and pc± is the vector from (to) the vertex to (from) the
centroid of T n. Of fn' i is sufficient to know only that it is independent
of s and hence that Pmn(s) is a rational polynomial in s. Eq. (7) differs
slightly from the corresponding form of Rao et al. 4 in that the term
exp(-sR±/c) has been replaced by the first term of the approximation
exp(-s T/c) & exp(-sRmn/c)[l-s(RA-Rmn)/cl in the first integral, while both
terms of the approximation are used in the second integral. Use of the
approximation is tantamount to neglecting the variation in the propagation
factor exp(-sRA/c) observed at the centroid of T± for sources in TA by replacingmn

-. it with the propagation factor exp(-sRmn/c) corresponding to propagation be-
tween nodes m and n. In the following we will also rely on the observation
from numerical experiments that the convergence of the solution of (5) is
independent of the subdivision scheme used to model S, assuming one adheres
to the previously mentioned modeling restrictions.

The asymptotic behavior of Ynm is estimated from its definition,

m+n(-l) A nm(s)

Ynm (s )  A A(s) (8)

where A is the determinant of [Zmn ] and Anm is the determinant of the matrix
obtained by deleting the nth row and mth column of [Zmn]. Formally, A may be
written as

N!-l a -sT
A(s) r (-1 )r PlkP ... PNAN e (9)

where

4Rao, S. S. M., D. R. Wilton, and A. W. Glisson, op. cit.
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cTr = Rlk +R 2k2 + . . +RN kN (10)

and where each summand with index r corresponds to one of the N! distinct sets
{kl,k 2 ,..,k N } obtained as permutations of the integers {1,2,...,N) and or is
the number of inversions in which a larger integer precedes a smaller one in
the permutation. Similarly, Anm is defined as

(N-i)!-l a -sT T
A nm(s) = (-1) r' PlkP2k .. ( P)n-l,k _iPn+l,k' PNk, e (11)

r'=0 n-I n+l N

where

cT7n = Rlk + R2 k + . . . +R l, +R+l,+ l +. . +k, (12)
1 k 2' nlk n_,n.+ Nn, k

in which each summand with index r' corresponds to one of the (N-i)! distinct
sets {k' k k k,... ,k'N },with or , inversions, as permutations of11 2"' n-11 n+1 .. N)

the integer set 1,2... ,m-l,m+1 .. ,N}. From (8), (9), and (11), the asymptotic
form of Ynm(s) is found to be

Qem(s) e min -Ti Res+

Y (s) = (13)
nm 

sTn T&[Qn(. Tmax - ma x

i Lm ( ) e masx-

nm nm
where QR and QL are rational polynomials in s and

T = max T (14a)
max r r

T . = min T (14b)min r r

nm nmmax ra r' 1c

Tnm = min T nm(14d)
min r' r'

From the definition of Tr, Eq. (10), it is seen that determination of TmaxkTmin)
is equivalent to determining the largest (smallest) value of the N! different
sums obtainable by adding together N elements chosen from the array [Rill such
that one and only one element is selected from each row and column. Tnm and
T n  are similarly defined except that the array [Riji has row n and column m
deleted and hence there are only (N-1)! different sums over N-1 elements.

2.1 Determination of Tma x nm
To facilitate the determination of Tmax and T a special scheme for

subdividing S into triangles is used. The scheme requires a different triangu-
lation of S for each element Ynm considered, which, while impractical, is at
least possible in principle. It further requires that nodes be placed such
that each node i(#m,n) can be paired with exactly one other node J(#M,n)
reached by a dirrcted line segment Rij from i to j passing through the center 0
of tine segment Rnm. The assumption on the convexity of S ensures that such

N-M
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a subdivision scheme is possible. A two-dimensional representation of this
scheme is illustrated in Fig. 1.

For each r, the elements from the array

[Ri1 which appear in cTr may be illustrated
piciorially by means of a line segment diagram.
In the diagram Rij is shown as a directed line
segment from node i to node J. Thus "from"
nodes correspond to rows and "to" nodes

S correspond to columns of [Ri. In forming
Tr for a given r, only one e ement may be

Figure 1. Special subdomain chosen from each row and column of [Rij]; hence,
division scheme which pairs in the line segment diagram each node appearsndvsiona shem t w i pas as a "from" node once and a "to" node once, as
nodes by a straight line paths shown in Fig. 2.

through the center of Rnm.

One possfble allowable configuration of
line segments is to choose elements Rnm and
Rmn ,Ius those elements Rij and Rji which pass
through the center of Rnm according to the
special sibdivision scheme introduced earlier.
Indeed, this configuration, which we call the

base configuration, is found to have a larger
S sum of segment lengths than any other allowable

configurations, and hence the sum is cTmax. To
see this, we compare the sum of the lengths of

Figure 2. A possible configu- the line segments of the base configuration
with those of some other allowable configuration,{, ration for elements selected designated as a modified configuration, by

from the array [Rijil. Note
that Rmm- has been selected. plotting them both on the same line segment

diagram. Only those line segments which differ
between the two configurations need be shown

since the common segments contribute equally to the sum of lengths. Fig. 3
shows the resultant line segment diagram when the modified configuration is taken
to be that of Fig. 2. Note that for every line segment of the modified configura-
tion which leaves, say, node i there must be a base configuration line segment
also leaving that node. A similar statement holds for nodes entered by line
segments. For example, corresponding to the line segment Ru in Fig. 3 are the
segments Ris and Rrj leaving and entering nodes i and J, respectively. Note
also that Rip Ri0 , and Roj form a triangle in which, by the triangle inequality,

R + ROj > Rij (15)

Similarly, such triangles are formed by each
line segment of the modified configuration
and the lines from their terminating nodes to
0. When all the corresponding triangle

S inequalities are summed, one finds that the sum
of the segment lengths in the base configuration
exceeds or equals that of the modified configura-

Figure 3. Diagram of line tion. Hence cTmax is the sum of the lengths

Segments which differ between of the segments in the base configuration.

the base configuration
(dashed lines) and the modi-
fied configuration (solid
lines) of Figure 2.

F!
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2.2 Determination of cTnm and asymptotic form of Y in the left half plane
max nm

nm
The procedure for determining cTmax is the same as that for determining

cTmax except that no line segment in either the base or the modified configura-
tion is allowed to leave node n or enter node m since the corresponding row
and column, respectively, are missing from [Rij]. Hence, by the arguments of
the previous section, the base configuration results in the largest sum of
segment lengths, cTM This sum, of course, differs from cTmax by the length
of the deleted segment, Rnm,and hence

cTnm  - cT -R . (16)
max max nm

Also, for each segment Rij in the base configuration with i#n, jomthe term
Pij(s) appears in the corresponding summand of both (9) and (11) and hence it
cancels asymptotically in (8). Thus we have

-2Rc nm
Y (s) - Re-w(7Ynm(S = + m t (s)nm , Res-- , (17)

where the plus or minus sign is determined by the sign of (-1) m+n+Gr +Cr with

r and r' corresponding to the base configurations. An important observation is
that the exponent in (17) is independent of the number of segments, N.

2.3 Determination of cTi

Since the diagonal elements of the array [RI are all zero (Rii =0), then
if diagonal elements only are selected from the array, the sum of the lengths

must be zero. Hence we conclude

CTmin = 0 (18)

In terms of the line segment diagram, every line segment which leaves a node
also enters that node and hence is of zero length.

2.4 Determination of cT nm and asymptotic form of Y in the right half plane

The quantity cTnn is the smallest sum of the line segment lengths that
min

can be formed by selecting one element from each row and column of the array

[Rij] with row n and column m deleted. Since deletion of a row and a column
generally removes two diagonal elements-leaving N-2 elements on the diagonal,
whereas N-I elements must be selected-then at least one non-diagonal element
must be selected. Restricting ourselves initially to the case mon, the base
configuration is taken to be the one in which all the remaining diagonal
elements plus Rmn are selected. In Fig. 4 we compare the base configuration
with a modified configuration in which a number of non-diagonal elements are
chosen, but not Rmn nor any element which leaves node n or enters node m. From
these restrictions we see that there must be line segment leaving node m and
entering some node, say i~m, from which there must issue still another line
segment and so on. This sequence of segments forms a continuous path which may
terminate only at node n. The total length of this path is, of course, longer
than the direct path R.n. Any other non-zero length line segments of the
modified configuration must form a closed path not involving nodes m and n and hav-
Ing a total length which could be reduced to zero by choosing instead the
diagonal elements of [Rij] associated with the nodes on the path. Thus the

l -
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base configuration has the smallest sum of
segment lengths,

cT nm'R . (19)
min mn

Returning to the case in which n=m, we note

that in this case all the elements of [Rij]
may be chosen to be diagonal elements and

S hence cT n  is zero. Eq. (19) includes this

special case since Rnn =O. Hence, from (13),
Figure 4. Diagram of line (18), and (19), we conclude that
segments which differ from thes
base configuration (dashed line) P (S)e 

n

for determining cTmin and a Y (s) -+ (S)P(s )
modified configuration (solid mm nn
line).

where the plus or minus sign is determined by
the sign of (-1) M+ n  rv+ o r with r and r'

corresponding to the base configurations.

2.5 Asymptotic form of f-1 (rj',s)

Since r.m corresponds to an observation point r, and rn corresponds to an
excitation point r', from (17) and (20) we conjecture that the asymptotic

behavior of - (r,r's) is

T (r,ir's) -+Pt(s) e , Res-±= , (21)

where the dyad P+(s) is rational in s. As discussed in the following section,

the asymptotic behavior of F in the left half plane must be interpreted as
applying on contours which thread between the poles there.

If one inverts f (r,r's) so as to obtain its time domain counterpart,

i - (r,r,t), one concludes from (21) that the Bromwich contour in the Laplace
inversion integral may be closed in the eft half plane for t >-r-r'I/c and
in the right half plane for t< lr-rI/c. Note this implies that in the inter-
val -r-;'I/c<t< Ir-r'I/c the contour may be closed in either half plane and

$hence F (r,r't) must be zero in this interval.

3. DISCUSSION AND INTERPRETATION

Regardless of whether the asymptotic form of Ynm can be used to infer that

of T-, as we have assumed here, the derivation of the asymptotic form of the

nu erical approximation to T- of the previous section is rigorous and the
result may have some application in the analysis of numerical approximations to
the SEK representation. However, the derivation required the assumption of
convexity of S and a special scheme for subdividing S which is different for
each combination of m and n. It may be useful for further understanding to
attempt to remove either or both of these restrictions. (Interestingly, the

5L. W. Pearson, op. cit.
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nmderivations of Tmin and Tmin do not require either restriction.)

The derivation also relies on the finiteness of the discretization. Since
the determinant A(s) consists of a finite sum of exponential terms, Re s can
always be chosen sufficiently negative that the exponential term with the
largest exponent so strongly dominates A(s) that the remaining terms cannot
cancel this term to produce a zero. Hence the poles of Ynm(S) are clustered

-I
about the Im s axis, whereas in P the poles are generally distributed
throughout the left half of the s-plane. Increasing N in Ynm(S) increases the
number of terms in A(s) while decreasing the differences between the exponents
of these terms, thereby extending deeper into the left half plane the region
where A(s) has zeros. For s lying within this region, however, one might
expect that cancellation at zeros changes to constructive addition of terms
in A(s) when s lies between the zeros, This would imply that expo-
nential growth of A(s) would still occur for points s between the zeros. This
is indeed the case for analogous quantities appearing in a number of SEM
problems that are analytically tractable, and would imply that the asymptotic
estimate remains valid on contours threading between these zeros (i.e., between
the poles of Ynm(S)). In using the Mittag-Leffler theorem to expand

- or J, or in determining which half plane to close the Bromwich contour in
SEM, these contours are precisely where an asymptotic estimate is required.

6

The different exponential behavior conjectured for P-i in the right
and left halves of the s-plane implies a certain arbitrariness in the right and
left half plane closure times for the Laplace inverse of expressions involving
=-I

r To give a physical interpretation to this phenomenan, we note that the! -i - -result of inverting r (r,r',s) is a time-domain Green's function F (r,r',t)

which represents the surface current at a point r on S due to a spatial and
temporal unit delta-function source applied at point r' and at t =0. Physically,
this excitation can be approximated by exciting the structure at t= 0 with a
short pulse produced by a voltage source connected across a small slit in the
metallic shell S at r'. The wavefront produced by the source will expand out-
ward from the source both on the interior and the exterior of the structure.
If S is convex, the interior path is the shortest path to the observation point

and hence the wavefront will arrive there at t= lr-r'I/c. In the time interval
0 <t< Ir-r'/c, the response at r is zero, as result which could be obtained
either from a valid representation of - (r,',t) resulting from the left half

plane closure of the Bromwich contour in the inversion integral or from a right
half plane closure yielding zero directly. In a more general problem in which
the excitation is distributed over S and the response at a point must be calcu-
lated from a convolution in both space and time with the excitation, this result
may be interpreted as allowing one a choice whether or not to integrate over
those excitation points whihc have not had sufficient time to interact with the
observation point. This arbitrariness is a cause of the non-uniqueness of
coupling coefficients in the SE4-derived time-domain representation.

The conjectured left half plane exponential decay rate implies that
the Bromwich contour can also be closed in the left half plane in the time
interval (-Ir-r'J/c,O), before the source is applied. If this is correct, then

the representation of rI (r,r',t) must be zero in this time interval since the
response must be causal. In the distributed excitation problem, this result
would imply that in the convolution integrals required to compute the response
one may actually integrate ahead of the exciting wavefront. Experience with the

6Pearson, L. W., this issue.
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sphere problem [3.1] 7suggests that the left half plane closure interval may be
extended to even earlier times by first performing the spatial convolution with
the excitation.

The non-uniqueness of SEM time-domain representations is a factor that is
particularly difficult for many electrical engineers to adjust to because of
their extensive training in dealing with lumped circuits, where such ambiguities
do not arise. The phenomenom is one that is common to distributed parameter
systems, however.
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SCALAR SINGULARITY EXPANSION METHOD
AND LAX-PHILLIPS THEORY

Maurice I. Sancer, Northrop Corporation, Hawthorne, CA 90250

ABSTRACT

A scalar theory of SEM based on the eigenmode expansion method (EEM) is re-
lated to the Lax-Phillips theory of scattering. The Lax-Phillips scattering
theory contains results which can be immediately applied to SEM. A byproduct
of developing this relationship is a formal proof that SEM poles are simple.

A demonstration of scalar EEM/SEM is presented for scattering by a hard
prolate spheroid which includes the sphere as a limiting case. The EEM
spheroid solution is shown to have direct bearing on issues of ,ecent concern
regarding the validity of certain EEM expansions. The SEM sphere results are
shown to contain all of the features of the electromagnetic SEM sphere scat-
tering solution.

1. INTRODUCTION

This paper treats scalar SEM theory as being based on the eigenmode expan-
sions method (EEM) corresponding to the solution of surface integral equations.
We prove that the set of complex eigenvalues that play a central role in the
Lax-Phillips theory [6.52, 6.53] is exactly the same set as the one consisting
of the (nonextraneous) zeros of the eigenvalues of the surface integral equa-
tion with the latter set being the SEM pole locations. We also demonstrate
that SEM Neumann natural modes are Lax-Phillips eigenmodes evaluated on the
surface and that SEM Dirichlet natural modes are normal derivatives of Lax-
Phillips eigenmodes. Only the Neumann and Dirichlet problems are treated.

In a previous work [3.12] we focused our attention on scalar SEM corre-
sponding to exterior scattering problems. In this paper we explicitly treat
the interior problem as well as the exterior problem and compare interior SEM
theory to standard cavity theory as opposed to Lax-Phillips theory. One of the
important aspects of Lax-Phillips theory is that it exhibits the great similar-
ity between exterior scattering theory and cavity theory. Throughout the text
we refer to the exterior scattering theory and cavity theory as Lax-Phillips
theory.

The connection between the Lax-Phillips theory and scalar SEM based on the
EEM approach benefits both efforts. The Lax-Phillips approach has a more ad-
vanced theoretical foundation. As an example of this, some conditions have
been established on the shape of scattering surfaces to which this theory can I
be applied. In addition, Lax-Phillips theory has been established as a late-

time asymptotic theory which includes error estimates. This information had

Electromagnetics 1:413-422, 1981
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not yet been determined by the SEM/EEM approach. In addition, quantitative
and qualitative estimating techniques have been developed for the complex ei-
genvalues. The SEM/EEM approach contributes to the scattering problem by pro-
viding explicit expressions for the expansion coefficients in terms of surface
quantities. These expansion coefficients, as well as SEM pole locations, have
been numerically determined by workers in the EMP community. More generally,
workers in the EMP community have developed the capability to numerically obtain
SEM solutions for scattering shapes that are beyond analvtic treatment.

Finally, we obtained a result made possible by the described connection
between scalar SEM and Lax-Phillips theory. We were able to obtain a formal
proof that the SEM poles are simple, and this has long been identified as an
open question by workers in the EMP community.

To provide a demonstration of scalar SEM for a particular problem, we con-
sider a plane wave incident on a prolate spheroid which then includes the
sphere as a special case. We consider the case where Neumann boundary condi-
tions are satisfied on the surface of the spheroid. We then specialize this
solution for the case where the spheroid becomes a sphere. We rewrite this
scalar sphere solution in a manner which exhibits all of the SEM properties
that Baum [3.1] showed for the electromagnetic sphere problem. Having done
this, we were immediately in a position to increase our knowledge as a result
of treating the scalar problem. The only analytic solution for scattering
from a finite object that it is possible to examine in the electromagnetic
case is the sphere solution. The eigenmodes for both the electromagnetic and
scalar sphere scattering problem do not depend on frequency; however, the
scalar spheroid eigenmodes do depend on frequency.

The spheroid EEM solution provided information in another related area.
An informative review paper by Ramm [6.69] includes a set of sufficient condi-
tions for the ordinary EEM solution (no root vectors required) to yield a mean-
ingful solution to our scalar integral equation. Ramm presents enough detail
in that article for us to conclude that we would not meet the described suf-
ficient conditions unless our scalar integral operator is normal. We are able
to show that this is the case when the scatterer is the sphere, and were able
to show that this is not the case when the object was the spheroid. For the
spheroid, the set of eigenfunctions of the integral operator and its adjoint
are clearly not the same sets and are not even simply related through complex
conjugation. Despite this, the EEM solution for the spheroid is shown to be
the standard separation of variables solution, thus demonstrating that Ramm's
conditions are only sufficient but not necessary. This is an important con-
clusion since much of SEM theory assumes EEM expansions that do not include
root vectors.

2. A SCALAR DEMONSTRATION OF EEM/SEM

The presentation of the material in this section is facilitated by
referring to Figure 1.

ff

Fig. 1. Separation of space into an interior and exterior region.
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In this figure we introduce a surface, S, that separates all of space into
an interior region, VI , and an exterior region, VF At this point S is just a
mathematically constructed surface; however, as t.is presentation proceeds, S
will correspond to a physical surface on which boundary conditions are satisfied
and it will also have shape requirements placed on it. Also. in Figure 1 are
sources denoted fE and fl, which are nonzero on finite volumes Vf and V4 contained
within VE and VI. We are interested in finding solutions to the'scalar wave
equation in each region.

(V2 -2)" (r,Y) = f(r,c), = E,I; 3= N, D (1)
where the-notation indicates Laplace transformation and Y= s/v with s being
the transform variable and v being the free space speed constant. In the re-
maining portion of this paper we omit the - notation. We are interested in the
solutionaof (1) subject to either Neumann (P = N) (8a0/an = 0) or Dirichlet
(P=D) (01) = 0) conditions on S as well as appropriate conditions at infinity.
We focus our attention toward obtaining the surface fields with the understanding
that the volume fields are readily obtained by performing standard integrals
that utilize the surface fields within the integrands.

Standard means yield the following integral equations for the surface fields

Ll '= h h I3 N,D ; c'= E,I (2)

0,) =i ( r) ) V(r) (4)
N NV7N-(r) -%(r ,r (4)

SLE' 0 (r) f (A (r'- V'G(r,r' , -0)0(r' )dS' (5a)

L0=1 0(r) ((r)-VG(r,r,) 4 (r) dS (5b)D ( -

G(r,r',-) = (4 ~-r'I)-lexp(-^YJr-r' ) . (6)

n(r) = AI(r) = -AE(r) (7)

L + L I1, P= N,D (8)

The quantities, h , are known functions corresponding to the incident
fields exited by the sources fE or f, in the absence of the scattering surface S.

The formal eigenmode solution for (2) is

* ¢' ,a a) a m (9)

m m m3 mp m3
where this solution is valid for those surfaces which require no root vectors
as discussed in the Introduction. The condensed summing index, m allows for
degeneracy since we do not preclude the possibility that a= . The
quantities Oa and AmPare the eigenfunctions and eigenvalues of . The
inner product'"sed ina9) is

(fMg) s f*(r)g(r)dS , (10)
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ta.
The quantitieskmp are the eigenfunctions of the adjoint operator L(t  For
the Neumann and Dirichlet operators it can be shown that

L =L , , (11)

where the prime notation on a and P indicates that aO a' and P f p so that
the primed indices must take the complementary assignments to the a and .
For example, when a= E and P= N, (11) states LE= L*.

N D
The significance of (9) will be discussed with reference to hard prolate

spheroid and sphere scattering. For the prolate spheroid geometry and notation
presented in [6.10] , we will present the explicit evaluation of the quantities
needed to explicitly evaluate the general EEM solution given by (9). The
prolate spheroid treated in that reference has the axis of the ellipse oriented
along the z axis, and because of the rotational symmetry, an incident plane wave
having an arbitrary incident angle, , is given by

0inc = exp(ik 0 (x sin +z cos )) (12)

where we have used the relationship iko = -^Y and in is a special case of h .E
Using the = ) e, the quantities needec fnr the EEM snlutionUsin th noatio nededare

MN mno

mne Smn(c, 1)(s mO)

(( 2 1/2
Omno mnI/4_1)(3b

0

(0m~einc )~ =7 nd2(-1)Rm 1)4c, 1)Smn (C, cos) , (13c)

(Omno 0 inc 0, (13d)

rn= - _ - )Rm1)(C,4l) dR ) (c,91 ) (13e)

d=I  2_ (1+6 N, (13f)
(mne,'mne) ( 1-) mn(1+6om)

and the notation employed is the same as that used in [6.10I , where the
meaning can be understood in more detail. Briefly ,7 and 0 are spIeroidal
coordinates, Smn is an angular spheroidal function, R(11 as well as R55 are
radial spheroidal functions, d is the distance betwee nthe foci of th ellipse,
41 is the constant spheroidal coordinate corresponding to the surface of the
spheroid, c is a normalized frequency, Nmn is a normalization factor, and 6om
is a Kronecker delta function. Obtaining the relations expressed in (13)
involves a considerable amount of detailed manipulation and most of this detail
is presented in [3.12]. It should be noted that an erratum exists for some of
the spheroid material presented in that reference. Substitution of Eqs. (13)
into the EEM solution given by (9), readily yields the same solution obtained
by separation of variables which is presented in [6.10].

Several important conclusions can be drawn from the spheroid EEM solution.
The first is that the EEM solution yields the correct results without the
addition of root vectors. This is the case despite the fact that LE for the
spheroid is not normal. This follows from the fact the eigenfunctigns of the
operator and the eigenfunctions of the adjoint operator are clearly different
sets. This fact is exhibited in (13a) and (13b). The fact that the spheroid
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EEM solution requires no root vectors combined with the lack of normalcy of the
associated operator proves that Ramm's conditions [6.693 for no root vectors
are not necessary.

Two features of the spheroid solution are worth noting. One feature is
that the eigenmodes depend on the frequency as exhibited by the explicit
appearance of the "c" factor appearing in (13a). The other feature is that the
twofold degeneracy of the eigenvalues (even and odd) is considerably reduced
over that of the sphere problem. Finally, a last feature not only relates to
the SEM sphere solution, but to the properties of the magnetic field integral
equation (MFIE). The operator defined by the MFIE was shown not to be self-
adjoint and yet the set of eigenfunctions and adjoint eigenfunctions were
shown to be simply related 13.11], in contrast to (13a) and (13b).

The convergence of the EEM solution for the sphere follows from the fact
that the spheroid solution converged to the correct answer. The eigenfunctions
and adjoint eigenfunctions for the sphere are the same functions which are the
products of Legendre polynomials and trigonometric functions

0 e = Pm(cos°}cos MO = ote 14
n sin mo mno (14)

and the eigenvalues given in standard Bessel function notation for the sphere
having radius a, are

Xn =-(Ya)2 in'a) k=(a) ,n~i =(iri (u) , h 1)(iu)=-(-i)nkn(u)
(15)

E
From (14) we can conclude that LN for the sphere is normal. In addition, (14)
exhibits the property that the eigenfunctions do not depend on frequency.
Equations (14) and (15) together exhibit the degeneracy of the eigenvalues
which is a higher order degeneracy than was exhibited by the spheroid. Sub-
stituting (14) and (15) into (9) for a plane wave incident field and using
orthogonality relations leads to the separation of variables solution for the
sphere.

The EEM sphere solution also serves the role of explicitly allowing a dem-
onstration of a scalar SEM solution. First we introduce SEM pole locations.
To do this we look for the totality of the zeros of the surface eigenvalues
Xn' () and we denote an arbitrary zero as -nc ,T (sc, T /v=va,IT ) and it
satisfies nn nn n

cn ) = 0 = 1,2,.. (16)np nn'P 3n

and the superscript T is used to indicate totality. Because of the interre-
lationship between interior and exterior problems, as exhibited by (11), we
expect

cc T 1 P) Unp} En X (17)

The zeros 7-, are the significant zeros and the zeros having the superscript
EX attached nqv the extraneous zeros. For the exterior problem, the signifi-
cant zeros are the ones having a negative imaginary part and the extraneous
ones are purely imaginary. For the interior problem, the significant ones are
purely imaginary and the extraneous ones are in the left half plane. An impor-
tant result which was derived in [3.12] is

( , hIEX a(,0 ,EX.)In 0Ofnn' P) hp =n 0 (18)

Ala, sonnn,1111"
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and this general result is consistent with the SEM sphere solution which is
now presented. For the sphere we look for the zeros of the eigenvalue given
by (15). The non-extraneous zeros correspond to

k' ( E
kn (n a)= 0 (19)n nn'N

and the extraneous zeros correspond to

SEIEX
in (nnN a) = 0 (20)

For completeness we note that )Ln has no zero at 'Y= 0. The eigenmode (equiv-
alently separation of variable solution) can be rewritten (no terms added or
omitted) for = 0 in (12) as follows

E = ea ; (2n+l) (_I)n, 1 p (Cos) (21)
N ' ai'(Y'n.,a) _" E n

where n dF nn'N

Fn(X) =ex x2kn(x) , Fn' (x) = n (22)

We note that the only poles that occur in (21) are the non-extraneous poles
and this is consistent with (18). We also note that all of the information
that was inferred from the electromagnetic sphere solution presented in [3.11
is contained in (21). A final note is that the concept of natural mode which
occurs in SEM appears in (21) in a vacuous manner. This is the case because
the SEM natural mode is the eigenmode evaluated at the non-extraneous pole
location. As can be seen from viewing (14), no explicit Y dependence occurs
for the sphere. In contrast (13a) for the spheroid has the explicit' de-
pendence for the eigenmode and the SEM significance of the 7 dependence has
yet to be determined.

3. SEM CONNECTION TO THE LAX-PHILLIPS THEORY

To facilitate the desired connection between the theory just presented and
the Lax-Phillips theory which is a volume approach, we introduce the volume
eigenvalue equations for both the interior and exterior scalar scattering
problems

(72- p2) = 0 a = E,I p= N,O (23)

For the interior problem, either Neumann or Dirichlet boundary conditions on
the surface as well as certain volume behavior requirements, e.g., require-
ments which force us to reject the explicit solutions obtainable for separable
coordinates that become unbounded, are known to lead to denumerable sets of
eigenfunctions n and eigenvalueslyij3

Returning to Eq. (23), we consider the exterior scattering problem. The
fact that, subject to appropriate boundary conditions, there exists only adenumerable set of eigenfunctions and eigenvalues is not as well known to be

the case for the exterior problem as it is for the interior problem. Either
the Neumann or Dirichlet boundary conditions together with the I-outgoing
condition expressed as

0K( 0 O)r- e En
, n(24)

for large r lead to the denumerable sets. As discussed in [3.12], we also
have the strict inequality

, I
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ReYf < 0 (25)En

The requirement on the shape of the scatterer is an issue that has received
attention. Many of the cited properties have been proved when the object is
star-shaped, i.e., a point within the object can be found from which a straight
line can be drawn that connects this point to any other point within the volume
bounded by the surface of scatterer. Star-shaped surfaces include convex sur-
faces. There has been some work and some conjecture concerning the applicability
of the work to surfaces described as confining or nonconfining [6.53]. It should
be noted that the predominant situation of an imperfectly sealed enclosure, i.e.,
a finitely thick-walled enclosure containing an aperture, is not a star-s'haped
surface.

We now restrict our attention to surfaces for which we have the desired
discrete spectrum for the exterior scattering situation and utilize the identity

V'[0 P VG-GVOPn] = *n V2 G-GV 2 ,00 (26)

a n a n an an
Substituting (23) into (26) and utilizing (V? 72)G = -

we have

OP VG-GV P 1= (2 _,p2)0P G - 6(r-r' )P . (27)

an an a n an - an

First we consider this equation for the interior Neumann problem and integrate
both sides over the interior volume. We next use the divergence theorem as
well as the Neumann boundary condition to obtain

* n( ') + (n r ) . V G(r,r ') n ( )dS : (72 - I )in GdV jIn /5 I , In (28)

Interchanging the notation r and r' and taking the limit as r approaches the
surface, we have

LIN N2  f) N

N In = In JV I I n GdV' (29)

where L is defined in section 2. A similar treatment for the interior
Dirichl~t problem can be readily performed. We summarize the results of (29)
and the results of the similar Dirichlet treatment as follows

(ry Fn(r)(,, ' 1 )  (30)In In n
wh ere

N =,N (31)

Yan -an
and =- D (32)

y D n n n('2 
)a

aann
[3 0Equation (29) defines F n forp= N and a somewhat similar expression for FIn

is readily obtainable; however, for our purposes we do not need the explici ex-
pression. We only require the fact that F P is finite and non-zero at
= +IYP Equation (30) plays an important role in this paper and the

comparigle equation for the exterior region plays an even more important role.
The derivation of the comparable exterior equation is far more intricate than
the derivation of (30). It utilizes an involved bounding argument that
requires the use of the outgoing condition (24), special attention to the
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behavior of the Green's function, and several intricate manipulations. These
details can be found in [3.12]. The resulting equation is

LE Y nPE (E) If 4 Fn E F Y , r) (33)

~~~3~ Eri n E...y ifAy

and FP is bounded and non-zero for 7=7EPnand is non-zero forY= -Y nEn En En'

We are now in a position to draw the comparison between scalar SEM and Lax-
Phillips theory. These conclusions will be drawn in terms of sets which are now
defined. One set is17~ I pl which is defined by (16) and (17) together with
the defining relationship Y-, = Snn.p/v. The other set is the one consisting
of the Lax-Phillips eigenvalues which are denoted IYOn . We will prove

{ ' .' } = gn (34)

The proof that

{afn Ycn'Y (35)

follows from the bounding arguments just presented.

Substituting ^='Yp into (34) leads to the eigenvalue equation that
implies (35) for the exterior problems. Substituting v = +1Y into (30)
leads to the eigenvalue equation that implies (35) for thein trior problems.
It is significant that the exterior bounding argument did not allow us to Jraw
corresponding conclusions for Y= -YIbE ,. This is in agreement with the fact
that exterior Lax-Phillips eigenvalues are strictly in the left-half plane and
we would have inconsistent results if we could imply the existence of right-
half plane values for -nn'P. The fact that for the interior problem, we could
conclude the existence of values of YIn'p corresponding to -Y&. is to be
expected. This is the case because then P's correspond to cavity resonances
and fall on the imaginary axis. The existPnce of plus and minus Y n being
in the set simply implies that complex conjugate pairs occur inthe setlY nn

In order to prove that

1 nn'r an (6

we will construct appropriate functions involving surface integrals and will
show that these functions are Lax-Phillips eigenfunctions. The Lax-Phillips
eigenvalues associate with these constructed eigenfunctions will be seen to be
the "nn'Y s. We now form

x a (rN) = N ,r') dS' (37)
n N rv ) 

=  rvr'nn'N nak nn'N

SNt *

where 0-N ( ,, r) is the complex conjugate of the adjoint eigenfunction
appearin ain (9, but evaluated at a pole location, and G is the free space
Green's function given in (6) with r replaced by rv . Direct substitution
will show that

=2 
)  XN 0 . (38)

(Vnn'N' nat

In addition xN can readily be seen to satisfy the If-outgoing condition and
XNt is finite n V . It remains to show that the Neumann boundary conditions
on S are satisfied. To show this we take the gradient of both sides of (37)
to obtain
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vX rv) = vG(rv, f', 7nN ) V'nN (Ynn N') dS' (39)

identifying r as a point on S which will be approached by rv , and defining
na(r) as the appropriate normal defined at the point r, consistent with the con-
vention depicted in Figure 1, we have

S(r). vxN(r) = La t*= Xa a *  (40)

- nn'N) 0nN =nN(Ynn'N'nN
Referring to the hypothesis that ^n, is a zero of AnN we conclude that

nn'N iazeo f nNe ecnlueta

8X
Na(r)

an =0 (41)

Equations (38) and (41) prove (36) foF the Neumann problem. For the Dirichlet
problem we construct

D n _at*, a
X rv)D I'(r') V'G(rv,r'
n a ,nn' D  n n (42)

Direct substitution shows that

(V2 .lya 2 D 0 (43)v nn' DJn( = O43

and XnE satisfies the v-outgoing condition while XDI is finite in VI . Taking
the limit as rv approaches the surface and using the adjointness relationship
given by (ll)- e obtain

Sna = D nD) =X nD(nn'D)0nD

The definition of -'Dtogether with (44) shows that XD satisfies the
Dirichlet condition Rld this fact together with (43) proves (36) for the
Dirichlet problem.

From the construction that led to the proof of (34) it follows that the
Lax-Phillips eigenfunctions evaluated on the surface are related to SEM
natural modes, as follows

n) = {) J, ( n  ) (45)

4. FORMAL PROOF OF SIMPLE POLES

The important structure of equations already presented in this paper is as
follows.

L (.Y) (r) = f (Y ,r) (46)n p

and this equation summarizes (30) and (33). The significant aspect of y (r)
is that it does not depend on -Y. The quantities R (Y, r) represent a yn-
densed notation for the right-hand sides of the cited equations. Recalling
the previous discussions of these right-hand sides, fn( '%r) has simple zeros
at 7y = + 7I? and these occur on the imaginary axis so hese zeros represent
a complex conjugate pair. For th exteri r problem, fnr(7,r) has a simple
zero at 7= 7 but not at = and n has a negat ve real part. We now

formally employ the eigenmode expansion given by (9) to obtain

. .. ,,.- ......N n nm nmun nreIu I / llIu _ , "----:- - .. ,
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y~n(r) = P_, fO3 ('ct . (Y,r) (47)
an m(oa-,(7),,amI (7)):1 o) Mr

Next, we substitute Y= +Yn, -Ytn into this equation and note that the left-
hand side of this equation is finite and nonzero while faP(QY) has a simple
zero corresponding to these values of 'Y. We avoid a contradiction bT first
noting that AI(+'i1 ) andE (ye ) are zero for some respective m s, and this
follows from (34). If the order of these zeros were less that) one,then the
right-hand side would still be zero for these values of Y;and if the order were
greater than one, then the right-hand side would be infinite at these values of
Y. Since the left-hand side is finite and nonzero, we conclude that the
zeros of the eigenvalues must be simple. As discussed in Section 2, the
zeros of the eigenvalues are the SEM poles and we have just presented a
formal proof that they are simple.
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EFFECT OF CHANGES IN FUNDAMENTAL SOLUTIONS
ON SINGULARITIES OF THE RESOLVENT

Ralph E. Kleinman, Applied Mathematics Institute, University of Delaware,
Newark, Delaware 19711

Time harmonic scattering of acoustic and electromagnetic
waves from impenetrable obstacles leads to boundary value pro-

- blems which are uniquely solvable for values of wave number, k,
with non negative imaginary part. However existence and unique-
ness questions remain when the imaginary part of k is negative.
In fact the SEM poles comprise such a set of values of k.
Integral equation formulations of scattering problems involving
smooth closed scatterers introduce additional exceptional values
of k, those corresponding to eigenvalues of an adjoint interior
problem. These additional characteristic values of k are real
and pose a serious obstacle to numerical solutions of integralIequations for exterior problems. In recent years, considerable
attention has been directed to resolving the problems present at
interior eigenvalues of which only a representative sample is

cited [6.8, 6.11, 6.13, 6.47, 6.49, 6.56, 6.63, 6.106, 6.122].

A method which involves modifying the free space Green's
function in the derivation of a boundary integral equation has
been proposed by Jones [6.40]. Ursell [6.107] clarified parts
of Jones' work and Kleinman and Roach [6.46] extended the results
to three dimensional scalar problems, and provided explicit
choices of the modification which optimized the formulation with
respect to various criteria (e.g. minimizing the spectral radius
of the integral operator). While the Jones modififcation
eliminates real exceptional values of k by shifting them into the
complex plane, a question remains as to the effect of the modifi-
cation on the SEM poles. This note examines this question in
the case of scalar three dimensional scattering with both Dirich-
let and Neumann boundary conditions. First some results on
boundary integral equation formulations with modified Green's
functions are cited. Then the case of scattering from a sphere
is examined in detail and we conclude with some comments on more
general scatterers.
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1. BOUNDARY INTEGRAL EQUATIONS

We adopt the notation of [6.46] and let D_ denote a con-
nected bounded domain in 13 with smooth boundary 3D and exterior
D+. Erect a Cartesian coordinate system with origin in D_, and
let p and q denote points in R and R(p,q) be the distance be-
tween them. Furthermore define normalized spherical wave
functions

(1) := i- (2n+l.(n-m)! i/2 h(l)(kr )pm(coSp )cosm

nm 7T~ m n+mT n P n P p

(2) se(p):={ LkEm(2n+1) (n-m)! 1/2 h (1 ) (krp)Pm(coSp) sin mp

where (rP,, ) are the spherical polar coordinates of p. Now
we denote the Yundamental solution of the Helmholtz equation or
unmodified free space Green's function as

eikR(p,q)(3) y o(p,q )  := _ e T

and the modified Green's function as

0 n e (p) e (q) se (p) e (a)
(4) y(p,q ) := yo(p,q)+ E Z [amncnmm m nm +nm nm snmn=0 m=_0

The coefficients an and bn in the modification are as yet
arbitrary but will' e chosen to eliminate interior resonances.
It is vital to the ensuing formulation that the scatterer D_ have
a non empty interior so that while the modification is singular
at the origin (in D-) it is regular in D+ and on aD.

With j=O or 1 denoting unmodified or modified Green's func-
tion we define single and double layer potentials

(5) (Sjw)(p):= fw(q)yj(P,q)dsq
fD 33

(6) (Dw) (p) := (p,q)ds

where a is the derivative in the direction of the outward nor-
mal to T nq DD at q. Denote by K. the boundary integral operatory, (p,q)
(7) (Kjw) (p) := f w ( q ) l-a )dS , pEaD

J D an~ q

with adjoint in L2 (aD)

(8) (Kjw)(p):= Dw(q)i (p~q) ds peaD.

where a bar denotes complex conjugate. In terms of K. the jump
conditions for single and double layer distributions are
unaffected by the modification and are

F
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(9) Sjw = +w + Kw, peaD

p

and

(10) lim D w = Tw + Kjw, pc3D.
p D+ J

where and aDt denote limiting values from D4 and D_. In
this Dn+ notation, Green's theorem applied to solutions, u,
of the Hglmholtz equation which satisfy a radiation condition at

4 infinity yields the representation

(11) (S j) (p)-(Dju) (p) 2 u, pED+
j3n )u, pcaD

This in turn gives rise to a pair of boundary integral equa-
tions, one directly, and one by taking the normal derivative from
the exterior and using the jump condition (9):

3u-* u =
(12) S au -T =Ui I F n iJ  p r D .

(13) Ka u U au
(1 3)- D -= I

These boundary integral relations give rise to boundary integral

equations for Dirichlet and Neumann problems as follows:

2. DIRICHLET PROBLEM: u = f, pc0D

Substituting the boundary data in (12) and (13) yields the
boundary integral equations

au a
(14) (I-K.) u a Djf.

j) Wii= 7ff j

(15) Sj- = (I + K*) f

Alternatively one may assume a solution in the form of a
double layer with unknown density

(16) u = -Djw, peD+

which, with the jump relation and the boundary condition yields

the boundary integral equation

(17) (1-9.)w = f p0D.

3. NEUMANN PROBLEM: au = g, peaD

Substituting the boundary data in (12) and (13) yields the
boundary integral equations

(18) (I+j)u Si g

(19) D Ju -(I-KI)g.
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Alternatively the single layer ansatz

(20) u = Sjw, peD+

with the jump relation (9) and the boundary condition yields the
boundary integral equation

(21) (I+K.)w=g, pE3D.

In [6.47] it is shown that for j=0 the pair of equations (14) and
(15) as well as the pair (18) and (19) have unique solutions thus
providing unique solutions to the Dirichlet and Neumann problems
for all real k. However if only the second kind equations are
considered (14) and (18), or the layer equations (17) and (21),
it is well known that these equations are not always uniquely
solvable. In particular

(22) (I-Ko) - = 0 and (I-K w 0
'' -o 3n o

have non trivial solutions when k is an eigenvalue of the
interior Neumann problem while
(23) (I+K ) w = 0 and (I+Ko-) u = 0

0 0

have non trivial solutions when k is an eigenvalue of the
interior Dirichlet problem.

It should be noted these values of k are real. On the other
hand these equations also have non trivial solutions for sets of
complex values of k which correspond to the SEM poles for the
particular problem.

While the non uniqueness for real k can be removed by con-
sidering a pair of equations as noted above, an alternative
resolution -asproposed by Jones by means of modifying the
Green's function. A modified form of Jones results is contained
in the following (see [6.46]).

Theorem: If the coefficients of the modified Green's func-
tion satisfy the relations.

(24) 12anm+11<l and 12bn+1<l

then

(25) (I+KI) w=0 and (I+KI) w=0

have only the trivial solution for all real k. The theorem
remains valid if the inequalities in (24) are reversed for all
n and m. This means that by modifying the Green's function
subject to (24), the equations of the second kind, (14), (17),
(18), and (21) are uniquely solvable when j=l.

4. THE SPHERE

To shed some light on the way in which the modification has
altered the location of the unwanted exceptional values of k and
to see how the modification affects the SEM poles we examine the

- - - -i
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sphere case in detail.

First of all it is convenient to write the eigenvalues eaua-
tion for K as

(26) (I - A(k)Kj) w=0

where the eigenvalues X will be functions of k and we are con-
cerned with those values of k for which X(k) = + 1 (+ for the
exterior Dirichlet problem and - for the exterior-Neumann problem.)

Because the spherical harmonics {P_(cos6)c~ m$) are com-
plete in L2 on the surface of the sphere it is a straight forward
matter to compute the eigenvalues explicitly [e.g. [6.48] for
the case j=01. Using the notation (1), (2), the standard expan-
sion of the free space Green's function is

n [e iP)C e i
(27) y (p,q) = [c (p>) c(p>)s (p<)

0 n= m=0nm m m nm

where p< = p or q depending on which is the smaller of {r , r q
and p> is p Qr q depending on which is the largr. Alsocim(p) an I Snm (P) are the same as ce(P) and se Jp except that

tfle spherical Bessel function j (kr*T replaces the spherical
Hankel function hn(1) (krp). Ths the eigenvalue equation is

p?

(iT 21T 2 n
(28) o=(I-A(k)K )w=-w(p) )-A (k7 { dowsinek n Z Z

'o n= m=0

e I e e I I e[ nm (P nm (gi+nm (Pnm (g +m n(P S nm nm-

where ' denotes differentiation with respect to krp. Let
PWS(cos) n and use the orthogonalitv of spherical

harmonics to determine that
(29)
Pm (cos6)l 's1i(l+iX(k) (ka)L2(h ( ) '(ka)jn(ka)+h 1 ) (ka)jn(ka))]=0

n sinmo n

and hence
(30) X (k) 1;

nilkal 2[fh(17'(ka)j n(ka)+h i) (ka) Jnlka) ]

is an eigenvalue of K of multiplicity 2n+l. Using the Wronskian
relation 0 A

(31) jn(kalh(1(kaT-Jn(ka)h~1 (ka)
(1 n nka)

the eigenvalues may be written as

(32) Ana(k)=- 1 2 k)a a 1 )

(+2i(ka) A (ka) 1-2i(ka) in(ka)h (I1 (ka)nn n

from which it is evident that the exceptional values of k for the
Dirichlet Vroblem, i.e. those values for which An(k) = 1 are the
zeros of Jn(ka) while the SEM poles are zeros of h()(ka).
Similarly it is evident that the exceptional values of k for
the Neumann problem, i.e. those values for which Xn(k) = -1 are
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zeros of Jn(ka) while the SEM poles are zeros of h (1) (ka).n

The calculation of the eigenvalues of the modified boundary
integral operator K1 is also easily carried out. Since

2~ 7r 2 OD n
(33) (I-X) (k)K 1)w=w-(k)f de f d4psinea kwZ

0 0o n=0 m=0
1 ' ' e e' i i' e1r[ce'm(P) Cim(q)+Cni.m(P)Cnm ()+Sne(P)snm (q)+Sni ( P ) e ( )

+ acl (P)Ce (q)+b sel (P)s e
nmnmP run nm nm nm

we again set w equal to a particular spherical harmonic and

utilize orthogonality to find

(34) pm(cosO)cosmW[l+iX(k) (ka) 2 n(hn  (ka)j (ka)+h (1)
n n n

+ 2ah(1) (ka)h (1 ) (ka))] = 0
nm n n

and

(3 I m(ka) 2 (n (ka)+h ( ) (ka)j'(ka)
n nsinm4[l+i(k) (ka 2ajn n n

+2bnh(1 ) (ka) h(1) (ka))] = 0.

Hence the eigenvalues of K 1 are

(36)
X (k)=- 

1

(1)(1 (a
i(ka) 2(h ( ) '(ka) Jn(ka)+hn( ) (ka)j n (ka)+2 hn (ka)h(1) (ka))

nn n nnm n n

which may be rewritten using the Wronskian (31) as

(37) A(k)=- i 2
+2i(ka) hn1) (ka)(J n(kafnmh(1 (ka))

1
l-2i(ka) 2 h ( I ) (ka) (Jn(ka)a " (i) (ka))

n n nmn

where Unm is either anm or bnm. From (37) it is clear that the
exceptional values of k for which X=l (Dirichlet problem) are
roots of

(38) (a) h nI)(ka) = 0 and (b) Jn(ka) + h ( I ) (ka) = 0nn n nm n

whereas the exceptional values for X=-l (Neumann problem) are
roots of

(39) (a) h (I) '(ka) = 0 and (b) jn (ka)+a h ( I ) (ka) = 0.n n nm n
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These results are summarized in the following table:

Exceptional values of k: A(k) = + 1

Xk) = 1 Exterior Dirichlet Problem (I - K.) w = 0

j = 0 jn(ka) = 0 h (I) (ka) = 0n n

j1 i'(ka)+ (i) '(ka) = 0 h (I) (ka) = 0n nmhn n

A(k) = -1 Exterior Neumann Problem (I + K.) w = 0

j = 0 Jn(ka) = 0 h(1) (ka) = 0n n

j = 1 (ka)+ h ( ) (ka) = 0 h (I ) (ka) = 0nn nm n n

From the chart it is evident that the effect of the modifica-
tion of the fundamental solution is to move the eigenvalues
(zeros) of in or in) off the real axis however the SEM poles

(zeros of hl) ') remain unchanged.
n

The relation between the coefficients of the modification
and the location of the shifted interior eigenvalues may be
clarified by the following consideration. If 39(b) holds then

= in (ka)
(40) anm

h (ka)n
and

2j n(ka) h(2 ) (ka)
(41) 2at +1 n = nnm =-+ i=~

hm (ka) h(i)ka)hn hn(a

Let

w = 2arm +l and z =ka

and consider the analytic transformation of conformal mapping

h (2 ) (z)n(42) w = - hn (z)
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h() (z)

If z is real, 1w! = I h () = 1 hence the real axis in the

n
z-plane is mapped onto the unit circle in the w-ilane. Since
the zeros of hAl) (z) lie in the lower half plane the lower half
z-plane is mapped onto the exterior of the unit circle while the
upper half plane is mapped onto the interior. From this it
follows that if 39(b) holds than

a) 12anm+1I < 1<- Im ka > 0

(43) b) 12anm+11 = 1 - Im ka = 0

and
c) 12anm+I1 > i1 -> Im ka < 0

If (38b) holds then a similar consideration of the transformation

h ( 2 )  (z)
(44) w -

h ( I )  (z)
n

shows that equations (43) remain valid.

We observe that the interior eiqenvalues may be shifted to
any point in the complex plane. That is if k is an arbitrary
complex number it will be a zero of (38b) or ?9(b) bv choosing
a nmto be either

(45) m = i(k 0  or in (k
h(1)'(koa) nm h) a)

n o n o

However by choosing the constants anm such that 43a) holds we
guarantee that the interior eigenvayues will be shifted into the
upper half plane.

2. CONCLUDING REMARKS

The example considered shows that the boundary integral
equations of the 2nd kind for exterior scattering problems can
be modified by appropriate choice of the fundamental solutions
so that they are uniquely solvable for all real k. Moreover
there is considerable latitude in the choice of modified Green's
function so that the unwanted interior eigenvalues may be
shifted any place in the complex plane. The SEM poles, which are
intrinsic to the exterior scattering problem are unaffected by
the modification of the Green's function. Whether these state-
ments all remain true for arbitrary nonspherical surfaces is not
yet known. Certainly it is true that the modified integral eaua-
tions are uniquely solvable for all real k for arbitrary smooth
closed connected scatterers. Moreover it seems reasonable to
conjecture that the interior eigenvalues are shifted for non-
spherical surfaces just as they are for the sphere. Certainly
they no longer are real and continuity arguments would indicate

* See e.g. M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions, National Bureau of Standards, U.S. Government
Printing Office, 1964.
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that small perturbations from spheres cause small shifts in the
location of the shifted values. However the conjecture that the
SEM poles are unaffected by the modification in the Green's
function for nonspherical surfaces must be established in another
way and this remains to be done.

I!

ai
I
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NEW RELATIONS FOR THE CHARACTERISTIC SINGULARITIES
OF BOUNDED SCATTERERS: PRELIMINARY REPORT

R. K. Ritt, Illinois State University, Normal, IL 61761

1. INTRODUCTION

This paper deals with methods that are being developed to calculate the
characteristic SEM singularities of perfectly conducting bodies - methods which
seem to be different from the standard techniques used by the SEM community.
The idea is to calculate a set of test functions with respect to which the
existence of a certain orthogonal function is a necessary and sufficient condi-
tion that a certain complex number,$, is a singular value. These test functions

F. are defined in terms of the eigen functions of the interior problem. Although
the theoretical results do not depend upon the interior problem being separable,
it is only in this case that it is possible to represent the functions in terms
of the standard functions of mathematical physics.

Sections 2, 3, and 4 consist of a statement of these theoretical results
and an outline of their proof. For the sake of simple exposition, the results
will be stated in terms of scalar theory. This work is complete and has been
extended to the electromagnetic case.

Section 5 is a status report on the attempt to use the results to determine
the singularities for the exterior Dirichlet problem for the finite cylinder,
an example, of course, of a problem for which the interior problem is separable.

Although the work is incomplete, it illustrates a technique which other inves-
tigators may find useful. It consists of, using integral transform methods,
finding representations which are only valid when ImJ < 0, and then, by path
deformation, obtaining a new representation which can be analytically continued
into the lower half plane.

2. STATEMENT OF THE THEORETICAL RESULTS

RI: For x, y two points in space and I a complex number, Im) < 0, let
F(x,y;) )- Ix - y-i exp(i3fx - yj). Let B be the boundary, piecewise smooth,
of a simple closed bounded region in space. A function h, defined on the in-
terior region, is said to be trivial or nontrivial according to whether or not
the function

V(x) f f Jf G(x,y;,) h(y) d3y

Int
tm
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is identically zero in the external region. If {vk} are the eigenfunctions for
the interior Dirichlet problem, the test functions {wk) are defined, in the in-
terior, as

w()= G(x,y;3) - dS(y)

B

Then the complex number ) is a characteristic SEM singularity for the exterior
Dirichlet problem if and only if there exists a nontrivial h for which

f J J h(x) wk(X) d3x

Int

is zero for all k. (Orthogonality condition)

To see how this works for the sphere, radius a, recall that the character-
istic singularities are the values of - for which the spherical Hankel functions

h(a) = 0
n

The eigenfunctions for the interior Dirichlet problem are

mn= exp(imn) Pm (cos 6) n(nlr) ,

0 < n, Iml < n, in(Knla) = 0. The function C can be represented as:

Cnm exp(im(O - )) Pm(cosi 0) Pm(cos ) j(r<) h 1 )(,r>)

n1m n n n
n,m

in which r< and r> have their conventional meanings as the smaller and the
larger of r and r', and the cnm are constants. Neglecting constant nonzero
factors (jn(Knla) # 0), the test functions are

WnI ep(-m)P(CSO nr) h
( 1 ) (ia)

nmlnn.-

Ifh l)(a)= 0 then, in virtue of the orthogonality of the zonal harmonics,

h e p('-im n (cos 6) o )j -r) satisfies the orthogonality condition with
respect to all wO Zfor which n 0 no; since wn  0, = Of h satisfies the ortho

nality condition. If V is computed, using thi h, V = exp(im@) Pn (cos O) hn(4r);

therefore, h is not trivial. On the other hand, if h
1)Qa) 0 0, nii n, anynu

h which satisfies the orthogonality condition must be orthogonal to all zonal
harmonics and is therefore trivial.

RI is a consequence of the following two results:

R2: For any h defined on the interior, the orthogonality condition is satisfied
if and only if V(x) - 0 for all x on B.

.- ... .. .. .. .
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R3: A complex number,-;, Im < 0, is a characteristic SEM singularity if and
only if there is a non trivi'l h, defined on the interior, for which V(x) = 0
for all x on B.

Remarks: For arbitrary h, defined on the interior, V(x), in the exterior region,
iv a solution of the scalar wave equation which satisfies the radiation condition,
and whose sources are in the interior region. R3 states that if a V(x), with
this representation, is not identically zero in the exterior region, and if
V(x) = 0 on the boundary, then.; must be a characteristic singularity; and, if
.1 is a characteristic singularity, there must be a V(x), zero on the boundary,
with such a representation, which is not identically zero in the exterior region.
If the characteristic singularities are identified with the singularities of
the analytic continuation of the resolvent Green's function, the first statement
follows from the Lax Phillips Theory 16.521. As will be seen below, the proof
given for R3, makes use of the identification of the characteristic singularities
with the singularities which occur in the integral equation (of the second kind)
formulation of the scattering problem 16.26].

R2 states that a V(x), in this form, not identically zero in the exterior
region, but for which V(x) = 0 on the boundary, exists if and only if a source
function can be found which satisfies the orthogonality condition. R2 is the
substantially novel result of this paper.

3. THE PROOF OF R2

Let {vk} be the complete orthonormal set of eigenfunctions for the interior
Dirichlet problem; the eigenvalues, X are real and positive. Since

2 2
Vvk + A k vk = 0 v k 0 on B

and

A2 2V G +2G = O(x 0 y)

(Gvk f f f k(X) dx

Int

can be calculated in the conventional way to be

2 21k W}
-I G(x,y;) a nx dS(x) - 4 iTVk(y)

k B - k

(2 X2)- Iwk(y) 4r vk(Y)l

whenever y is an interior point.

Suppose, first, that V(x) = 0 for all x on B. Then V(x) is the solution

to e interior Dirichlet problem

V2 V + 2 V = -4rh

As usual, the generalized Fourier coefficients are
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(V,vk )  -41o 2 X2.-1 (h,v M

On the other hand,

(Vvk) =f fJJffG(xy;3 ) h(y) d'y vk (x) d3x

k) f If tf fk hf ydknt nt

f f1J (G, Vk) h(y) d y

nt

-(2 -A
2 )-l fJfJ {wk(y) - 4lTvk (y)) h(y) d'y

Int

Thus,

(VVk) = (2 - A2)-'{ f f f h(x) Wk(X) d3x - 4(h vk)} o.o (**)

Int

If this representation is compared to (*), it is clear that h satisfies the
orthogonality condition.

Conversely, if the orthogonality condition holds, (**), which depends only
on the definition of V, shows that (Vvk) is given by (*).

If the derivation of (*) is reviewed, it is apparent that V has the same
Fourier coefficients as the solution to the Dirichlet problem; since {vk } are
complete and both V and the solution to the Dirichlet problem are continuous,

they are identical.

The proof is complete.

4. IDENTIFICATION OF THE CHARACTERISTIC SEM SINGULARITIES AND THE PROOF OF R3

The inversion of the operator

[T )(y) - 0(y) + (2ir J G(x,y;9 4(x) dS(x)

B y

when Im > 0, is equivalent to calculating the resolvent Green's function for
the exterior Dirichlet problem; the operator is, in fact, invertible for

Im3 > 0. The characteristic SEN singularities are those values ofJ, Im.J < 0,
for which the operator is not invertible, or, equivalently, the singularities
of the analytic continuation of the resolvent Green's function into the lower
half plane. From the Fredholm alternative, the singularities are precisely
the values of3 , Imtn < 0, for which the adjoint problem

[T* ](y) -0(y) + (2) - "fJ x G(x,y;-)) 4(x) dS(x) = 0

B

has solutions not identically zero. By taking complex conjugates, this is
equivalent to the equation

4-
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*(y) + (2r) -l J f G(x,y;j) 4 (x) dS(x) = 0 .. (1)

B

having nonzero solutions. R3 is, therefore, an assertion that for Im,7 < 0,
this integral equation has a nonzero solution if and only if there exists an
h, defined on the interior, which is nontrivial, and for which

V(x) = *f f f G(x~y; 1) h(y) d3 y
Int

is zero when - is on B.

Before proceding with the proof, it should be observed, first, that the
characteristic singularities occur in pairs, N and -j; and second, that it
is known, from the Lax-Phillips theory, for arbitrary nontrivial h, is a
characteristic singularity whenever V(x) is identically zero on B, because

V2V + -2v = 0

in the exterior region and

V - exp(i Jxj), as lxi

The first half of the proof of R3 is a restatement of this fact.

Assume that h is nontrivial and that V(x) = 0 on B. Let u be the unique
solution of the interior Neumann problem.

r V
2

u +..2u = -47rh, u- = 0 on B.an

Then, as is standard, for all y in the interior,

u(y) + (411 -1 f f a'nG(x,y;,) u(x) dS(x) = V(y) ....... (#)

B

and for all y on B,

u(y) + (2n -1f f G(x,y; ) u(x) dS(x) = 2V(t) = 0 ...(##)

B

On B, therefore, u is a solution of (I). To prove that, is a singularity it
is sufficient to show that u is not identically zero on B. If it were, from
(#), u and V would coincide on the interior, as well as on B. Therefore, both
V and its normal derivative vanish at B. From this, and the form of V, it
can be shown that V is identically zero in the exterior region. Consequently,

h is trivial, contrary to hypothesis.

V
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To prove the converse, assume that 4 is a nonzero solution of the integral
equation (I). It can be shown that functions exist, twice differentiable on
the interior, with normal derivative zero at B, and having the value 4 on B.
Let u be such a function. Define h, in the interior, as

h (47)-1 V2u + 3
2u0.

Since u, on the boundary, is a solution of (I), V, for this h, is zero on
B. It remains to show that h is nontrivial. If not, V would have zero normal
derivative at B, and therefore V and u would be solutions of the same interior
Neumann problem. Thus V = u, implying the u is zero on B. This is a
contradiction.

The proof is complete.

5. THE APPLICATION OF Rl

In order to use RI, it is required that the eigenfunctions {vk } be computed,
that a representation for G(x,y;1 ) be found in a form which permits the calcu-
lation of the {Wk}, and that the'orthogonality conditions be used to make
inferences about the singularities. For the sphere, a fortuitous confluence
of the representations for {vk } and G, in terms of zonal harmonics, makes the
process simple. (Perhaps it should be noted that the argument in Section I is
a very simple demonstration that only the complex roots of h~l)(,a) are
characteristic singularities.) 

n

In general, even for the case in which the interior Dirichlet problem is
separable (e.g.: hemisphere, finite circular cylinder) the problem seems to
bq very difficult. However, one has the advantage that the {vkl are easy to
calculate in terms of well known functions. To obtain the wk in closed form
the following steps are taken: 4

First, classical integral transforms are used to obtain representations
for G. Because these transforms require that the functions to which they are
applied be Nery small for large values of the argument, this calculation can -.
only be performed when Iml > 0. j

Second, the wk are computed, obtaining a closed form representation as
an integral.

Third, the integral is transformed by a deformation of path; a new closed
form representation is obtained. It can be continued into the lower half
plane.

As an example, let the suzface be that of a finite circular cylinder, with
radius a and length L. The interior region is defined by cylindrical coordinates

0 < r < a, 0 < z < L, and 0< < 2r .

The eigenfunctions of the interior Dirichlet problem are

AW
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Vnk m = exp(ino) sink izr Jn(Yma) 0 .

The function G G((r,o,z), (r',¢',z');) is the solution of

V2 G = -4v 6(r, ,z;r', ',z')

which is regular at r = 0, and which wexp(i, lxi) when jxl is large. V2 is
expressed of course in cylindrical coordinates.

Then the test functions are:

SexP(-in4){a y Jjn,(yna) f sin k12z' U (rz;a,z') dz'nk u 0 L n

+- fi J n (y n r') (-1) Un(rz;r',L) U (rz;r',) r'. .... (w)

where

2z  ( 2
- Un+ l a + 2 n2 /r 2) U + -- U = -41 S(r,z;r' ,z')
2 Un r -y Un n 2 n

ar r az

The Fourier transform is applied to this differential equation, the transform
being taken with respect to z, using s as the transform variable. Using
standard methods, the transform U* is found:

n

U*(r,s;a,z') = -ir i ni(Pr) Hin(Pa) exp(-isz')

p is the branch of (s2 - s2) whose imaginary part is positive when s is real.
U is then recovered from U*, in the form of a Fourier integral. The first
iAtegral which appears in tie formula (w) for wnkm is

L knz'

0o s i n --- U n ( r z ;a ' 
)  d z '

kin 2 J  (pr) H=l) (pa) (- l ) k exp(-isL) - 1 exp(isz) ds

r 2 (1) 1n 2L
L (r H l()L s[ - k2 ,2/t e

To calculate the second integral which appears in (w), the process is repeated
using a Fourier-Bessel transform with respect to r, and the transform variable
t. Suppressing a nonzero factor, the closed form representation for wnkm,
valid for Im > 0, is
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Wk =exp(-ino) {J J (pr) H~1l (pa) _ p-isL) - 1exp(isz) ds

+ 2 f (-I)k exp(ig(L - z)) - exp(iqz) Jn(tr) Jjn(ta) dt
0 L q t2 -y

2

nm

q is the branch of 3 2 - t 2)- whose imaginary part is postive when t is real.

The final step is to reevaluate these integrals in a form which can be
continued into the lower half plane. To illustrate the method this is done
for the first integral.

Designating the integral by I, I = lim I -eI is the integral along the
real s axis, deleting an interval of width e at each of the points s = kn/L
and s = -kn/L. The limit is taken as e approaches zero.

Then the integrand is written as the sum of two terms one of which contains
the factor exp(-is(L - z)); the other contains the factor exp(isz). Attention
is fixed on the term which contains the factor exp(isz). The notation le will
be retained, for this term.

On the Riemann surface for (32 s2) above the s plane, the following

path is constructed:

C'i
/

/
/

/\

... . ..... , ... .. .. - R

C~R

/ - # _____ __

I is the integral along the deleted path, but for -R < s < R. Clearly,
Ie isRthe limit of IR as R becomes large. The dotted line in the diagram
corresponding to the arc C', is on the second sheet of the surface; the hatched
lines are the cuts in the a plane. The indicated curve is simple and closed
on the Riemann surface. Consequently,

IR + IC- +I + IC' + IC 0

C R
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It is then routine to verify that as R becomes arbitrarily large, IC, converges
to zero, and that Ic R can be written as an integral, along the upper edge
of the cut, of a funglon in which only Bessel functions appear. IC and I
are easy to evaluate as e goes to zero.

A similar calculation can be performed for the other exponential factor.
After some manipulation the integral can be written:

L/k sin kiz/L Jn(( 2 - kT2/L2 ) r) H.l1 ((2 _ k2 i2/L2) a)LInj

+ P J 1 1 (pr) Jin (pa) (-l)k exp(-is(L - z)) - exp(-isz) ds
: :. s2 _ k2T2/L2

The integrand is an analytic function of-, and the integral converges for
all3 ; the remaining terms have well known continuations into the lower half
plane.

i4

- i: bv.
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COMPLEX SINGULARITIES OF THE IMPEDANCE FUNCTIONS
OF ANTENNAS

C. T. Tai, Radiation Laboratory, Department of Electrical and Computer
Engineering, The University of Michigan, Ann Arbor, MI 48109

I. INTRODUCTION

Most of the research on the singularity expansion method are based on the
integral equation of the surface current on a conducting scatterer or the
eigenfunction of the natural oscillation of some bodies of simple shapes. An
alternative approach, more closely related to the transient response of
antennas, is to study the complex singularities of the impedance function of
these antennas. This approach is similar to the search of singularities for
a terminated line [1]. In fact, for a biconical antenna the model is exactly
the same because the input impedance of a biconical antenna can be interpreted
as that of a terminated biconical transmission line [2,3]. For antennas of
arbitrary shape they can be treated as nonuniform biconical antennas by a
perturbation method originally due to Schelkunoff [3]. However, for this
class of antennas the average characteristic impedance of the antenna, which
is a parameter used in the perturbation theory, is arbitrary. This procedure

is similar to that of the thickness parameter in higher order solutions of
Hallen's theory based on the integral equation method.

In this paper we will first review the basic method used in the trans-
mission line theory and then apply it to thin bicor'cal antennas. Schelku-
noff's perturbation method, with a proper modification of the value of the
average characteristic impedance, is then applied to thin cylindrical and I
prolate spheroidal antennas.

II. ZEROS Or THE INPUT IMPEDANCE FUNCTION OF A TER £NATED LINE

For a lossless line terminated by a load impedance Z the normalized
input impedance function zi(s) of the line expressed in Laplace transform
domain is given by

Z(s ) = 1 + r(s)e
-2 s

1- r(s)e
-2s  

l

where
s =

Electromanetics 1:443-453, 1981
027245343/81/040443-11$2.25
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z(s) - z Y- Y(s)
r(s) Z(s) + z Y +Y(s)

c c+y)

1 - y(s)
P) (2)

Z =1-- = characteristic impedance of the line.
Y

C

For a line termined by a series R-L-C impedance, for example, the zeroes of
zi(s), denoted by sn, are roots of the equation

1 + r(s)e -2s  = 0 , (3)

where F(s) = z(s) - 1 z(s) r r+as+-

z(s) +1 ' s

Three typical distributions ol - based on the solution of (3) are shown in
Figs. 1 through 3.

III. ZEROS OF INPUT IMPEDANCE FUNCTION OF THIN BICONICAL ANTENNAS

According to the theory of biconical antennas [2,3] the input impedance
function of these antennas can be written in the form of Eq. (1) except that
the characteristic impedance is now replaced by that of the biconical
transmission line and the load impedance or admittance by an effective
terminated function resulting from the radiation of the antenna. For thin
biconical antennas the characteristic impedance is given by

o 2
Z = - ln-
c s 00

where

S(I /C )1/20 0 0

0 = half-angle of the bicone,
0

and y(s), the effective normalized terminal admittance expressed in Laplace
transform domain, has the expression

y~ Y(s) Zo _2s [ i
y(s) = -f)- = {2L(2s) + J (in 2 + L(2s) - L(4s)]

+ e2s [-n 2 + L(-2s)) , (4)

where s = Jwk/c,

I = length of the biconical antenna,

c = (pogo

L(x) f ox (l-e-t )/t dt
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The zeros of the input impedance function of a typical thin biconical
antenna are shown in Fig. 4. They are first obtained numerically by a scanning
search method and later verified by Giri based on a more systematic contour
integration method [4]. It is quite certain that there are only two branches
or layers in the upper left half plane in the s domain. There are, of course,
two conjugate branches in the lower left half plane.

IV. ZEROS OF THE IMPEDANCE FUNCTIONS OF THIN CYLINDRICAL AND SPHEROIDAL
ANTENNAS

According to Schelkunoff [2] antennas of arbitrary shape can be treated
as nonuniform biconical antennas. By using a perturbation method it is
possible to calculate the impedance of these antennas. However, the parameter,
corresponding to tL3 characteristic impedance of the uniform biconical antenna
used in the perturbation method, is arbitrary. This parameter plays a similar
role as the thickness parameter in Hallen's theory of cylindrical antennas
based on the integral equation method. In Schelkunoff's original work he used
the average characteristic impedance of these antennas as the expansion
parameter. They are:

(in - 1) , for cylindrical antennas

Zca

9n , for prolate spheroidal antennas

The biconical antennas with these characteristic impedances have the dimension
shown in Fig. 5a by the dotted lines. The corresponding cylindrical antenna
and the spheroidal antenna are shown in the same figure. The impedances of

these ante3nnas based on this model do not agree well with the results based
on other methods, such as the one due to King and Middleton [5] and the
variational solution [6]. We, therefore, have revised Schelkunoff's theory
by using an average impedance

Z
z - Zn-.ca a

The biconical antenna with this characteristic impedance is shown by the
dotted line in Fig. 5b. j

The values of the impedance calculated based on this modified parameter j
in the perturbation method agree much better with the results of other theories.
Following Schelkunoff's theory the relevant formulas are:

()= y(s)A(s) + B(s) (5)
Zi() ys)C(s) + D(s)

where

A(s N(s)Ch(s) + M(s)Sh(s).~D( s ) -Sh( s) ZI a

I ca
B(s" -Ch(s) + N(s)Sh(s) + M(s)Ch(s)
C(s - c

.1 ca
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z

N(s) = - - [Sh(2s) - L(2s) + 1 L(-2s)]
si) 2 2

Z

M(s) = 2 [Ch(2s) - 1 + 1 L(2s) + - L(-2s)]
2 ( 2 2

The function y(s) is the same as the one given by Eq. (4) with Z
therein replaced by Z' . A typical distribution of the zeros of z.(s for

cylindrical antennas based on this method is shown in Fig. 6. The zeros
of the corresponding inscribed biconical antennas are shown in the same figure.
Figure 7 shows a comparison of these zeros for another cylindrical antenna
with the results obtained uy Tesche [7] based on the integral equation method.
Figure 8 gives a comparison of our result for the prolate spheroidal antenna
with the one obtained by Marin [8). There is very little similarity between
our calculated value and their findings. In particular, like the distribution
of the zeros for thin biconical antennas there are only two distinct branches
for both cylindrical and spheroidal antennas based on the present method, and
there are more branches or layers according to Tesche's calculations. We are
unable to offer an explanation of these differences.

V. POLES OF THE CURRENT RESPONSE FUNCTIOU OF A BICONICAL RECEIVING ATE2:NA

According to the well known theory of receiving antennas the load current
of an antenna terminated by a load impedance operated as a receiving antenna
placed in an incident field is given by

p(s) -h(s)I(s) = ZL( Z.(s)

where El(s) = incident electric field,

hRs) = vector effective height function.

Zi(s) = input impedance function of the antenna operating in its

transmitting mode and

ZL(s) = terminal load impedance.

All quantities are defined in terms of the Laplace transform variable 's'.
The zeros of Z L(s) + Z.(s) correspond to the poles ef the current response

function. There may be other poles associated with the excitation function
El(s) and the effective height function h(s) of the antenna which are not

under discussion. Based on this model we have calculated the roots of the
equation

ZL (s) + Zi(s) = 0

for a thin biconical antenna. A typical distribution of the poles of the
current response function is shown in Fig. 9 for a resistive load. It is
seen as the load resistance changes from zero (short circuit) to inifnity
(open circuit) the poles of I(s) start from the zeros of Z. (s), marked by

2.dots, then migrate and terminate at th poles of Zi(s) , maked by crosses.All poles are simple except the one located on the negative real axis at
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s = -1.61. It is interesting to note that the poles started at the zeros
of Z.(s) from the second branch recede to negative infinity for a matched load
(R L Z or a = 1) but those started at the first branch migrate in the finite
plane. The effect of loading as exhibited by this plot has not been studied by
other, workers based on the integral equation method. No comparison, therefore,
can be made

VI. CONCLUSIONS

The zeros of the impedance function of thin biconical, cylindrical,
and prolate spheroidal antennas have been calculated based on a method
similar to the one for a terminated transmission line. For cylindrical
and spheroidal antennas Schelkunoff's perturbation theory with a proper
modification has been used. The results, in general, show considerable
difference as compared with those obtained by the integral equation method.
In particular, we have found only two distinct branches of zeros in contrast
to many layers found by other workers. The distribution of the zeros based
on the impedance method is very similar to that of a transmission line termi-
nated by an impedance. It is poseible that the difference could be due to
different approximations involved in the two methods. As far as the time
domain solution is concerned the singularities with low real damping constant
are the significant ones for the transient response. Since the first branch
based on the two different methods is very close the actual transient response
may not be significantly different. The poles of the current response function
of a biconical receiving antenna have also been investigated to illustrate the
application of the present method for this class of problems involving a loaded
antenna. A decent explanation requires a thorough examination of the unique-
ness problem based on different methods. When an approximate formulation is
involved as in our present work where the terminal admittance function is an
approximate expression for thin biconical antenna it is not clear whether or
not it may have a drastic effect on the distribution of its 'exact' singular-

ities. The assistance of Mr. Soon K. Cho in the numerical computation is
gratefully acknowledged.
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ON THE USE OF SINGULARITY EXPANSION METHOD "

FOR ANALYSIS OF ANTENNAS IN CONDUCTING MEDIA

D. V. Girl and F. M. Tesche, LuTech, Inc., P.O Box 1263,
Berkeley, CA 94701

ABSTRACT

The application of the singularity expansion method (SEM) to the analysis
of antennas and electromagnetic scatterers has usually been applied to simple,
isolated bodies in free space or to simple bodies near a perfectly conducting
ground plane. Theoretical studies of SEM have been applied to these rel-
atively simple geometries to yield significant insight into the radiation and
scattering process. In analytically investigating the behavior or antennas in
a lossy medium, it is known that in addition to simple pole singularities,
there is a branch cut linking two branch points in the complex frequency
representation of the antenna response. While significant information re-
garding the nature of the branch cut and its effect on the antenna response
can be obtained by purely analytical methods, a numerical study of this
antenna can provide useful results.

This paper provides an analysis of the behavior of a linear antenna
in a conducting region. Special attention is paid to the importance of the
branch cut contribution to the overall antenna response. The possibility of
realizing the input admittance or impedance of the antenna via lumped circuit
elements is first reviewed for the case of a lossless medium surrounding the
antenna, and then extended to the case of an antenna in a lossy medium.

1. INTRODUCTION

The introduction of the singularity expansion method (SEM) by Baum [3.1]
has resulted in a useful method for determining the wide band or transient
electrical behavior of antennas and scatterers. Due to the mathematical com-
plexity of SEM, however, it is not generally possible to perform a thorough
analysis on such problems without resorting to numerical methods. Even in the
case of an extremely simple body, say a sphere, numerical methods are needed
to evaluate the complex singularities (poles) of the response. Furthermore,
significant theoretical questions regarding SEX, such as completeness and the
existence of entire functions, remain unanswered.

Whereas numerical calculations can be used to examine some of these un-
answered theoretical questions in SEM, they certainly cannot be considered to
be a "proof" of a particular fact. They can, however, serve to guide the
theoretical studies of SEM by providing data on selected geometrical configur-
ations. This paper presents results of a short study of a linear antenna
immersed in a conducting medium. Of particular interest are:

Electromagnetic. 1:456-471, 1981
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(1) the computation of input admittance Yin and short circuit current 'Sc via
a knowledge of the complex singularities and (ii) one form of synthesizing
these quantities using lumped parameter networks (LPNs).

This paper is organized as follows. After this introductory section,
Section 2 briefly reviews the SEM analysis of the problem of cylindrical
antennas in free space. In Section 3, the SEM analysis of a cylindrical
antenna in a conducting medium is considered and methods of synthesizing its
input quantities using lumped parameter networks (LPNs) are described. In
Section 4, typical numerical results are presented. Section 5 contains a
summary and is followed by a list of references.

2. SOME COMMENTS ON SEN ANALYSIS OF CYLINDRICAL ANTENNA IN FREE SPACE

Integral equation formulations have proved to be a powerful tool in
analyzing general shapes and impedance loading distributions on antennas and
scatterers. Specifically for solving transient/broadband problems, a complex
frequency (s E_ Q + jw) approach employed by SEM analysis starting with a
Hall~n or Pocklington type of integral equation has been widely used. The

* basic idea of SEN is to express the electromagnetic behavior in terms of
complex singularities. The SEN work reported to date has concentrated on

* computing the responses of finite size objects in free space. In many
instances, only poles appear in the finite plane, giving rise to a consider-

* able simplification. One example is the SEN analysis of a straight thin wire
in free space. The first numerical study using the method of moment tech-
niques, on the subject of SEN analysis of thin wires, was performed by
Tesche [4.48].

computed starting from the electric field integral equation formulation. The

other SEN parameters, e.g., coupling coefficients and natural modes, were also
evaluated at the natural frequencies. These SEN parameters are then used in
determining the time domain behavior of the induced current on the thin wire
scatterer. The interested reader is referred to Tesche's work [4.48] which
lists a number of observations and questions, some of which are yet to be
addressed. One important observation is that the transient behavior of this
class of scatterers can be computed for any angle of incidence and shape of
incident waveform by knowing the SEN parameters; natural frequencies.
coupling coefficients and natural modes.

3. SEN ANALYSIS OF CYLINDRICAL ANTENNA IN CONDUCTIVE MEDIUM

3.1 Integral Equation Formulation

Consider a linear cylindrical dipole antenna of lengh L -2h and a
radius, a, immersed in a homogenous, isotropic and time invariant conducting
medium. The geometry of the problem is illustrated in Figure 1, where the
constitutive parameters of the surrounding medium which is assumed non-
magnetic are Olt coc.,, and v,. The Pocklimgtom form of the integral equation
for the axial current distribution is similar to that for the free space case,
except for the change in the propagation constant and the additional con-
duction current component of the incident field. The integral equation
applicable to the conducting medium case is now given by
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z2 - y) ,f I(z',s) KG',z';s) dz'= -(sE+ 0 1 )Elz C(z,s) (1)

-h

where

-Y1 R(z,z')

K(z,z';s) = e 4vR (z ,z')

Yl Ecomplex propagation constant c Vr sG

and R(z,z') = [(z- z') 2 + a2  .

Starting with the EFIE above, the object is to perform a numerical s-plane
SEM analysis, leading to a determination of the input quantities Yin and Isc,
which are obtained directly from the solution I(z,s) of the integral equation.

This analysis may be carried out numerically by computing Yin and Isc in
the complex s-plane via a moment method solution of the integral equation.
Using this method for evaluating the complex antenna input functions and a
pole/zero searching routine, the antenna response singularities in the finite
complex s-plane are sought. The input functions are then expressed in terms
of the known singularities as ratios of polynomials and, later, as a summation
of partial fractions for synthesis. However, in marked contrast with the free
space case, it is seen that due to the square root in the complex propagation
constant, branch points occur in the s-plane, making the co;.plex s-plane two
sheeted for each branch point. It is possible to analytically determine the
location of these branch points and then verify these locations numerically,
using numerical methods. A detailed discussion of the occurrence of the
branch points and the associated branch cut is the subject of the following
subsection.

3.2 Occurrence of Branch Points

In the kernel function K(z,z',s) of the integral equation, the exponent
-yIR is the source of branch points. Since the distance term R(z,z') is
frequency independent, an examination of the propagation constant y1 suggests
the occurrence of branch points at s = 0 and s = - Ol/(RE0r). For the case of
real al and Cr, the branch points occur in the normalized s-plane at
(sL/rc) - 0 and (sL/7c) _ 120 OlL/Er. The associated branch cut extends from
the origin to the second branch point along the negative real axis in the
s-plane. This was numerically verified for a number of cases by computing the
discontinuity in the input impedance and admittance Zin arid Yin' respectively,
along the negative real axis. The discontinuities were seen to be purely
imaginary and they did validate the predicted extent of the branch cut.

Of special interest, especially for synthesizing the antenna response
using lumped networks, is the determination of the locations of poles and
zeros, which fortunately turns out to be less tedius than one might expect.
The procedure for obtaining the pole-zero locations for the lossy medium case,
knowing their locations for the free space, is outlined below.

N---
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3.3 Trajectories of Poles and Zeros Given the Free Space Value

In this section, the relationship between the pole (or zero) locations
for a linear antenna in free space and in a conducting medium is developed.
This relationship is then used in plotting the pole and zero trajectories in
the complex s-plane for the antenna input impedance, Zin.

It has been observed [4.54] that the essential change in the integral
equation for free space and for the conducting medium lies in the complex
propagation constant. This change amounts to a change of variable from

s to sNtJr + i/s-0>.

This observation leads to the following relationship

a1 
= .2 2r + 4crP o (2)

where pC, and pao are the location of poles of Zin for the antenna in a lossy
medium and free space, respectively.

To graphically illustrate this equation, consider a dipole antenna of
length L = 2h = im and shape factor 0 = [2 tn(L/a)] of 10.59. Its first few
poles and zeros are computed numerically for the free space situation. Note
that the origin is an impedance pole when a = 0. But as soon as some finite
conductivity is introduced, the origin turns into a branch point and poles and
zeros asymptotically move toward -- on the negative real axis. The pole-zero
trajectories are plotted in Figure 2, where the conductivity is gradually
increased from Oimhos/m to about 5 x 10-2 mhos/m. These trajectories are

* computed by using equation (2). With respect to these trajectories, two
observations are in order, (i) the trajectories do not appear to intersect, so
that there is no cancellation of a pole and zero for any finite value of con-
ductivity, and (ii) the trajectories do not cross or run into the finitely
long branch cut on the negative real axis.

In review, it is noted that once the pole-zero structure in the upper
left half s-plane is known, it is straightforward to compute the corresponding
pole-zero locations for the antenna input quantity, when the antenna is
surrounded by a conducting medium. The determination of the singularity
structure is complete, once the branch cut is added to the knowledge of
pole-zero locations.

The occurrence of the finite branch cut along the negative real axis of
the complex s-plane contributes to the pole series of antenna input quantity
(say F(s)). F(s) can represent either Zin or Yin of the antenna in a
conducting medium. Let us now determine the branch cut contribution to F(s).
Consider the following contour integral, in reference to Figure 3

ds = [2J F(so) + R0 (3)

where R. is the residue at pole s . The above result follows from Cauchy's
residue theorem. Assuming negligible contribution on the infinite circle,
the contour integral on the-left side of the above equation becomes



460 D. V. GIRl AND F. M. TESCHE

-- trajectory of a pole of Z in
Strajectory of a zero of Zin

.D5 0150105 0 1

025 *- - 46--
.00 X A 10

.01 ox T 02 015 .01 .005 0 --1

.03
D7

.03 .015

.0 .05 .0214

0 0-12~ ~ ~~~0 -1 1 -18-7- 5 _-_2 1-fo-055 12

Figre .olean zeo tajctoie inth cople fequnc ofth
input~~~~~ imeac falnaratna o aiu

medigm.02 codc-vte



ANALYSIS OF ANTENNAS IN CONDUCTING MEDIA 461

IS'

eax

.Contour C

aI

Figure 3. Evaluation of the branch cut contribution to the input
quantities, e.g., Zin or Yin



462 D. V. GIRl AND F. M. TESCHE

lai to d = 2j [F(s) + R SO (4)

leading to

R -- "+F(s) = OLs + 2- Q dQ

0

where AF(Q) is the discontinuity across the branch cut. The integral in
Eq. (4) is specifically the branch cut contribution to the response and the
summation term is the familiar pole series contribution. It is interesting
to compare the contribution to Yin of the branch cut, relative to the
collective contributions of the poles in the finite complex plane. Such a
comparison was carried out for an antenna of 1 meter in length, and for all of
the examples considered for a = 0 to 10-2mhos/meter, the branch cut contri-
butions were found to be negligible.

3.4 Isc and Yin and Associated Network Realizations

The pole series of the form contained in Eq. (4) leads to partial

fraction expansions of the following form the Yin and Isc*

i Cyl(D)s2 + C Ws + C (a)
Yin(s) E s2 + Ci4(W)s + Ci5 (a)

2sc 2
S 2+ Ci4(c)s + CiS(a)

1

The partial fraction expansions can be realized using lumped networks and the

results are summarized below.

Defining

Dya - Cyl(a) - [Cy 3(ct)/Cy5 (a)]; Eya - Cy2(() - [Cy 3(a)Cy4 (a)/Cy5 (a)]

(7)
FYa = Cy4 (a) - [DyaCy5(a) /Ey]; GYa - Eya - Dy Fyo,

the LPN elements in Y realization of Figure 4a are given by

R2  Cy5 (a)/Cy3(a); Ca = y

(8)
R1  l/D; La - 1/Gya and Ra -Fy/Gya .

Furthermore, the individual current sources I, 12, 13, ... Im of Isc in

A
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Eq. (6) are combined with individual Y1 Y2' Y 3 "' YM in Eq. (5), by writing
the equivalent voltage sources V1 , V2 , V3 , ... VM as indicated.

s2  (a) + s C 2 (a) + Ci3 (a)v a  C 82

S= ya a s2 Cyl(a) + a Cy2(a) + Cy3 (a) (9)

The Vare synthesized in a form given by Figure 4b, denoting

Ava Cil (a)/C 2(O); Bva =Ci3(a)/Cy2 (a)

Dva - C 2 (a) - [Cil(a)/Ava] Eva C 3(0) - [Cil(a)B v/A va (10)

Fva - 1 - ta E vID Va; Gva = E - [Dv Bva/F va I

In terms of the above known parameters, the LPN elements in the source
synthesis are given by

V = Cil(a)/Cy1(a); Rla - C il(a)/Ava; R2 a f D va/Fva

R3a G va/B va; C la i A /D va; Fv /Gva

Thus, the complete Norton circuit realization of the antenna in a lossy medium
is shown in Figure 4 and all of the LPN elements as well as sources are known,
in terms of pole locations and residues. It is observed that this is only one
form of the circuit realization, since synthesis in general is a non-unique
process. It is also noted that if 01 of the ambient medium were - 0, the
circuit realization would simplify considerably, giving equivalent circuits
that are similar in form to those used by other investigators [4.2].

4. NUMERICAL RESULTS

4.1 Input Impedance and Admittance

Using the previously described method of analysis, a series of calcula-
tions were performed for an isolated antenna (L - 1 meter, A/L - 0.05,

- 10.59) in a conducting region. Figure 5a shows the magnitude of the
antenna input impedance as a function of frequency (wL/c) for conductivities
of a - 0, .001, .01, .05, and .1 mhos/meter. The corresponding input ad-
mittance magnitude is shown in Figure 5b. As the conductivity increases from
zero, it is seen that the input impedance starts having a resistive component,
and at a high conductivity value, the antenna seems to be "shorted out." It
is interesting to note that the resonance effects of the antenna vanish as a
increases. At a - .01 mhos/meter, the resonances have almost been eradicated,
and at a - 0.5 mhos/meter, there is no trace of a resonant behavior. It is
apparent from Figure 2 what is happening in this case. As a increases, the
poles and zeros move off into the left hand complex frequency pland and give
smaller contributions to the overall response. As seen in Figure 2, the
change of pole and zero locations from a varying between .01 and .05 mhos/
meter is extreme, especially for the fundamental (lowest) resonance.

N _ _- P-
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For the driven antenna problem, we are interested in more than just the
input inpedance or admittance. We must also calculate the Thevenin or Norton
equivalent sources. For this example, Figure 6 shows the open circuit voltage
magnitude, Voc, and short circuit current magnitude, Isc' as a function of
frequency (wL/c) for a - 0.001 mhos/meter and various angles of incidence 0
(defined to be 00 along the antenna, and 900 normal to it) of a 1 volt/meter
incident plane wave. It is interesting to note that at w - 0, the short
circuit current of the antenna goes to zero in the case of no air conduc-
tivity. As a is increased, however, the current is non-zero. In a manner
similar to Yin and Zins the resonance effects in ISc and Voc tend to be
swamped out as a increases.

4.2 Synthesis Results for an Antenna in Free Space

As previously discussed, the necessary information to perform a lumped
circuit synthesis of the antenna is contained in the poles and residues of
Yin and I Sc. In carrying out the reconstruction of Yin or Isc from the
appropriate poles and residues of the functions, it is important to keep in
mind that we are attempting to approximate a function having an infinite
number of poles by one with a finite number. It has been found that for a
pole series representation for Yin of the form

~in aI (~ Rca (12)
pa rs

the convergence of the series to the correct value is a very slow function of
the number of~pole pairs considered.

One approach to alleviate this problem is to use a modified pole series
expansion [4.3] of the form

Thi -i + -(13)

Thsfunction has the same poles and residues as Yin, but is also constrained
to vanish term by term at w - 0. It has been verified that the resulting
spectrum magnitude for IyinI as computed from the integral equation and as
computed from the modified pole series are in excellent agreement. As a
result, the synthesis of the circuits for Yin, as well as for the other input
quantities, is based on the modified pole expansion form.

Using the synthesis procedure previously outlined, the following circuit
elements for the input admittance of the isolated antenna in free space
(L - 1 meter, A/L - .05, Q - 10.59, a - 0) have been determined (see Table 1).
Similarly, the elements for the Norton sources are given in Table 2. For the
form of the circuits, the reader is referred to Figure 4.

* As may be noted, there are several negative circuit elements which occur
* in LPN. This is the unfortunate consequence of attempting to model a dis-

tributed field problem by a discrete circuit model. Efforts by other invest-
igators [4.461 have led to a circuit synthesis involving only positive
definite elements, but the circuits are relatively complicated.

It is interesting to consider the effects of neglecting the negative
resistance in the synthesized circuits for Yin* We found that neglecting the
negative elements introduces a significant error for the higher resonances,
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but for low frequencies (i.e., the first natural frequency and below) the
effects are not severe. Also, the results of LPN model of Yin and Zin were
compared with the 'true' solution of the integral equation revealing dis-
crepancies in higher frequencies due to truncation of pole series.

TABLE I

NORTON CIRCUIT ELEMENTS FOR ISOLATED ANTENNA IN FREE SPACE

Pole Pair RO(Q) R1 (k l) R3 (ki) L(i ) C(pf)

1 -3.05 2.31 .47 2.77

2 -98.28 6.03 .41 .33

3 -217.30 9.43 .39 .12

TABLE 2

NORTON CIRCUIT ELEMENTS FOR SOURCES FOR ISOLATED ANTENNA IN FREE SPACE
(0inc . 900)

Pole Pair V'(Volts) R' (Ohms) R'2 (Ohms) R'3 (Ohms) C'(0f) C'2 (0f)

1 .64 7.32 x 10 3  2.97 x 10 4  0 .66

2 -.31 5.75 x 10 -  2.29 x 10 -  0 .073

3 .23 5.15 x 10- 3 3.14 x 10 - 3  0 .022

4.3 Synthesis for an Antenna in a Lossy Medium

The various circuits used for representing the impedance or admittance as
well as the sources for an antenna in a lossy medium have been discussed in
Section 3. It had been postulated that the presence of a finite air con-
ductivity would give rise to a simple resistive element shunting all
capacitors in the LPNs for the antenna. The rationale behind this spec-
ulation stems from the fact that if a lossy dielectric is inserted into an
ideal capacitor, the resulting circuit model for the device is a shunt R-C
circuit with R = [a/(Cc)].

We investigated the validity of this alternate circuit representation by
calculating the shift of the natural frequency of the LPN for Yin given in
Figure 4a with that given by simplified circuit involving only shunt re-
sistances. In this case, both circuits are identical for a - 0. As a
increases, all elements of the circuit in Figure 4a change, but in the approx-
imate circuit, only the shunt resistance varies. The resulting difference
between the actual antenna resonance frequency and that provided by the
simplified LPN is significant, especially at conductivities greater than
0.01 mhos/meter. There are also difficulties with .his approach of using
only shunt resistances in attempting to synthesize the antenna response.
The implication of the above is that all LPN elements must vary as a varies.

As an example of a specific synthesis for an antenna in a conductive

-tt
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region, consider an' isolated antenna (L = 1 meter, A/L = .05, 0 - 10.95) in a
region with a = .001 mhos/meter. The following table presents the circuit
elements for representing Yin of Figure 4.

TABLE 3

NORTON CIRCUIT ELEMENTS FOR ISOLATED ANTENNA (a = 10- 3 mhos/meter)

Pole Pair R0 (S2) RI(kQ) R2 (k l) L(pH) C(pf)

1 105.9 8.35 3.19 .48 2.73

2 -5.4 7.74 27.06 .41 .33

3 -128.0 10.81 74.15 .40 .12

Similarly, the source elements for each pole pair for e = 90' excitation are
given by Table 4.

TABLE 4

CIRCUIT ELEMENTS FOR SOURCES FOR ISOLATED ANTENNA (a = 10-3 mhos/meter), = 90*

Pole Pair V'(volts) R'I(0) R'2( ) R'3 (Q) C'(f) C'2 (Pf)10- 3  10- 3

1 .64 7.56 x 3.05 x 0 .64

2 -.31 5.84 x 10-  2.31 x 10 0 .041
-3 -33 .23 5.21 x 10 3.16 x 10 0 .022

As may be noted, the values of R'3 and C'2 are such that these circuit
elements appear shorted in the source circuits for this value of conductivity.

Figure 7 presents a comparison of IYinI as computed from the integral
equation and as obtained from the LPN. As before, good agreement is noted for
low frequencies, but the high frequency errors are again present. These
errors arise from not having a sufficient number of LPN circuits and, in part,
due to neglecting the branch cut contribution to the admittance, although for
this value of conductivity, this contribution is small.

5. SUMMARY

In this paper, we have presented an SEM analysis to understand the
behavior of a linear antenna in a conducting region. In the past, theoretical
studies of SEM have been applied to relatively simple metallic objects, with
only pole type of singularities. For the present problem, branch points and
an associated branch cut are present in the complex frequency plane. The
occurrence of branch points and the finite extent of the branch cut are
numerically validated. However, for the examples of conductivities considered,
the contribution of the branch cut to input parameters (Ytin or Zin), compared
with the combined contribution of complex poles in the finite s-plane was

found to be negligible. This Is not always the case and, in general, branch
cut contributions should be included.

.... ..
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Of specific interest li this paper is the determination of Yin and 'Sc
of antennas in free space and in conducting media and their eventual real-
ization into a Norton equivalent circuit for the antenna input terminals.
Such circuits have their usefulness in the EMP interaction problem, for
example. It was found that in the particular form of synthesis, non-
negligible negative elements appear. If such circuit realizations are
unacceptable, more complicated networks are possible. Furthermore, one can
only synthesize pole type singularities and, hence, branch cut contributions
to input quantities, if any, can be approximated by a finite number of poles
for synthesis purposes. Another approach that deserves deeper investigation
is to synthesize branch cut contributions by lossy transmission lines
resulting in hybrid (lumped and distributed) parameter networks (HPNs).
The applicable range of validity of neglecting the branch cut contributions
deserves attention in future analytical efforts.

In conclusion, the past work has been extended for antennas in lossy
media for the case of oblique incidence. Certain symmetries are preserved in
the formulation of the problem, construction of the pole series, and
synthesis. This results in circuit realizations that are consistent with each
other. For example, if the medium conductivity is removed, the circuit
realizations for all input quantities are consistent with the free space
problem.

A&



RESONANCES AND SURFACE WAVES: THE INVERSE
SCATTERING PROBLEM

Herbert Oberall, Department of Physics, Catholic University, Washington,
DC 20064, and Naval Surface Weapons Center, R-31, White Oak,
Silver Spring, MD 20910

Guillermo C. Gaunaurd, Naval Surface Weapons Center, R-31, White Oak,
Silver Spring, MD 20910

The Singularity Expansion Method (SEM) of radar scattering
1

[2.1, 3.1] is based on the observation that the echo return from
pulsed radar signals consists of a superposition of damped sinu-
soids. In the frequency domain, the scattering amplitude conse-
quently contains a number of complex poles, whose residues de-
termine the amplitudes of the damped sinusoids. Along the real
axis of physical frequencies, these poles manifest themselves as
finite resonances in the echo, like the foothills of more or lessf distant, very high mountain peaks2 . Both these descriptions of
the scattering process, in the time domain or in the frequency

* domain, are equivalent, but each has its own advantages for ex-
tracting the wealth of information contained in the radar echoes
as regards the target identification problem. In addition, we
shall here introduce also the mode number domain.

In the time domain, the sinusoidal echoes are preceded by a
pulse which is a replica of the incident pulse, being due to
specular reflection. In the frequency domain, the specular echo
appears as a non-resonant background, interfering with the reso-
nant terms3 - 5 [4.6, 4.12, 4.16, 4.20, 4.22, 4.35, 4.36, 4.37, 4.4

1. Reference numbers refer to the collective bibliography in this
issue.

2. Langenberg, K. J., "Methods and Applications in Transient
Analysis", in Proceedings of the International U.R.S.I. Sym-
posium 1980 on Electromagnetic Waves, Munich, Germany,
August 26-29, 1980, p. 413 A/I.

I,

3. Gaunaurd, G. C., and H. Uberall, "Theory of Resonant Scattering
from Spherical Cavities in Elastic and Viscoelastic Media",
J. Acoust. Soc. Amer., Vol. 63, p. 1699, 1978.

4. Gaunaurd, G. C., and H. Uberall, "Numerical Evaluation of Modal
Resonances in the Echoes of Compressional Waves Scattered from
Fluid-Filled Spherical Cavities in Solids", J. Appl. Phys.,
Vol. 50, p. 4642, 1979.

5. Flax,L., and H.Uberall, "Resonant Scattering of Elastic Waves
from Spherical Solid Inclusions", J. Acoust. Soc. Amer.,
Vol. 67, p. 1432, 1980.
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6.60]. This will be demonstrated here for the example of a con-
ducting sphere of radius b, coated with a homogeneous dielectric
of outer radius a.

A plane wave - E exp(ik z), incident on a spherical target,
gives rise to a scattered far field 6 (using spherical coordinates
r, 0,0):

_+ ik r.
Esc= o (eior/k0r)*8aS 1 (O)cos -g S2 (8)sine, (1)

where the polarization functions

S (6) =-i (-l)n 2n+l fa b (cose) dP 1 (cose)
n=l n(n+l) n sine n do } (2a)

1 1

2 n= 1 ~n(n+l) n den se

contain the "Mie coefficients" (x=k a):

xjn(x)-iZnXjn (x )]'  (3a)
an - hn(1 (x)-iZ n [xhn (I ) (x)]'

b xj n(x) -iY n [x in (xT]an - (1) (x)-iYn [xh(1)(x)]' (3b)
bn=Xn( ~~ n Xn

with normalized impedances Z and admittances Y appropriate fori .n 6  n
the coated conducting sphere . The complex-frequency poles are
the roots of the denominators of a (TE modes) and bn (TM modes) in
the x variable ("characteristic eqUations"), to be designated
x TE and x TM, respectively. Here, n labels the mode and k the
muitiplicityof solutions within a given mode.

Figure 1 shows the radar cross section
a= (42/ko2 ) 1 (-l) n (n+ ) (an-bn) 2 (4)

n=n

plotted vs. x 'jr a coating with c=6 and relative thickness
6=(a-b)/a=0.05, with clearly visible resonances. (This figure is
very close to one previously obtained by Rheinstein [4.41].) The
real parts of the pole positions, obtained by solving the
characteristic equations, are indicated by arrows, labeled by nME
(TM modes appearing in this x-region only).

It is evident that the resonances appearing in Fig. 1 interfere
with some non-resonant background. Mathematically, a and b cann nbe split accordingly, e.g.

T (1) (2) TM TM
bn = exp(2 in T M  z _ zn + 2i exp(-i& T sin& TM (5a)

n n 1

6. Ruck, G. T., et al., Radar Cross Section Handbook, Plenum,
NY, 1970.
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where

Zn = Xhn (x)/[Xhn (x)], i=1,2, (5b)

and &n TM is defined by

(o)TM e2 i&nTM ([xh,(2 )x)'/[Xhn( 1 )x]' , (5c)S n  e n = x, /[x 1(c

this quantity representing the "S function" for a conducting sphere
of radius a (the S function for a general layered sphere being
defined by S TE = l+2a , S TM= l+2b ). The characteristic TM
equation is n iY =z(l) nso nthat in 9q. (5a), the first term in
brackets is a megom8 rphic function representing the resonances.
The second term gives a contribution to b corresponding to the
case of a conducting sphere of radius a (where 2 -0, Y n-), andconstituting a background to the resonant first Perm. n

We have shown recently [6.60] that the S function of the
layered sphere may be expressed in terms of a meromorphic function

RnTM (x) = I (n9) (6)
9=-M x-=TMn9£

known in Nuclear Physics as "Wigner's R function" [6.51], thus
determining its singularity structure. For the case of well-
separated resonances one may use the "one-level approximation",
which transforms Eq. (5a) into7

bn = bn (int) + bn (0) (7a)

b (int)=exp(2i&TMi -I TM (7b)bn =ep(£ x~T + TM 7)
TM T M

the resonance positions xnT and widths r TM being givenexplicitly
TM nTM nR.

16.60] in terms of yn£ and XnM of Eq. (6),and where

bn) nTM nTM (c
(o)= i exp(i& nT ) sin n (7c)

(7 bUnt) rpeet
In Eqs. (7), b represents a contribution of "internal"

resonances which would be absent for a conducting sphere.
Physically, the origin of this series of resonances lies in the
excitation, during the scattering process, of a set of "internal"
surface waves which propagate around the sphere inside the die-
lectric coating, and which at a given resonance frequency have
phases that match up after each repeated circumnavigation, hence

7. Gaunaurd, G. C., and H. Uberall, "R-Matrix Theory of Sound
Scattering from Fluid Spheres via the Mittag-Leffler Expansion7
J. Acoust. Soc. Amer., Vol. 68, p. 1850, 1980.
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Fig. 1. Radar cross section for a conducting sphere coated with a
dielectric (c=6) of relative thickness 6=0.05, plotted
vs. x-k a -2na/A. Resonances are labeled by nM£ (n=mode
number, M="transverse magnetic", £= resonance order) and
value of k a.
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Fig. 2. Dispersion curves c (x)/c for the TM-mode surface waves
no.£=1,2, and 3 on I conducting sphere with dielectric
coating, of outer radius a. For comaprison, dispersion
curves of TM surface waves on a dielectric sphere of
radius a are shown also.
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building up the resonance. The existence of the surface waves Is
demonstrated by transforming the SEM (frequency) poles of Eq. (7b)
into poles in the complex mode number (n) plane, located at4
(6.60, 6.61, 6.104]

A

n., = n + 5ilr (8a)

where n is defined by the equation x n£ = x, the resonance

frequencies xn9 being considered a function of n (see fig. 1), and

where n = 9x/(dx nO/dn).

Evaluating Eqs.(2) at these poles shows their a dependence to be
exp t i (n£+ ) e, so that they represent surface waves with phase
velocities

c9(x) = [x/(nZ+ )]c. (8b)

The corresponding dispersion curves for the surface waves can then
be obtained from the frequency resonances, and are shown in Fig.2
for the TM type surface waves. The families of resonances Xn£
(for the given £th surface wave) recurring in successive modes n
are the physical manifestations of the surface waves, the latter
causing the resonances by phase-matching after successive circum-
navigations as seen from Eq. (8b), and taking into account a iT/a
phase jump at each of the two convergence points of the surface
waves on the sphere.

We next interpret the term b (0) of Eqs. (7) which at first
sight appears to be a non-resonant background term, possibly( identical with the entire function often postulated (3.1] in SEM
to contribute to the scattering amplitude in addition to the
resonant terms b (int). In reality, however, this term is also
resonant since iP reads

bn (0) xn(x)] , . (8c)
[xhn(l) (x)]'

Its poles are the well-known [3.1] complex zeros x ( )TM of
[xh (I) (x)]', and expanding the latter expression abBt these zeros,
the TM contribution from bn(0) e.g. to S 1 (0) of Eq. (2a) may be
Ofitten as

r(o)
( __,)n 2n+l 1 L nt n1£=I n=l n^n+ ) (°)TS [;(°)h(1) (^(°))] *

Xnln ni n XnZ

(8d)

11x dPn(coss) 1

do ^_(O)TM
X-nt

which exhibits (via the last factor) the meromorphic character of
even this "background" contribution. The corresponding resonances,
however, are generaly very broad due to the large imaginary
parts [3.1] o n , so that in a plot of cross section vs.

frequency, they would not appear as resonances, Nevertheless, no
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entire function seems to be present in this case.

bo) Analogously to the "internal" surface waves, the resonances in
b() J likewise have an interpretation in terms of diffracted,
d~mped "external surface waves", also called, "creeping waves" by
Franz ° who obtained them explicitly by applying the Watson trans-
formation to the scattering amplitude of the conducting sphere. He
showed that in addition, a specularly reflected contribution

s(O) spec(0 ) =- xe 2ixcose/ 2,S 1= x-(Be)
(o)

got added to the creeping-wave contribution in S( of Eq. (8d),
which arose from a saddle-point contribution to ihe integral into
which the mode sum of Eq. (2) was converted by the Watson trans-
formation.

In the present case of the coated sphere, there is another
"geometrical" contribution present in addition to the reflected
wave, namely refracted (or transmitted) waves that penetrate the
interior of the coating from which they re-emerge; these have been
studied for the acoustic case 9 previously. Summarizing, therefore,
we see that in the scattering process, resonances are generated
both by internal and to a lesser degree by external (diffracted)
surface waves, while "geometrical" specularly reflected as well as
transmitted (refracted) waves produce an additional, possibly
resonant contribution to the scattering amplitude.

The locations x and widths [ of the frequency resonances
have been shown to povide an analytic solution to the inverse
scattering problem for the example considered [4.15, 4.17, 4.18],
i.e. to determine the thickness and the dielectric constant c of
the coating on the conducting sphere. Using asymptotic forms of
the Bessel functions, one finds e.g.

= RTM /TM (9a)
S cot(rXnT/ n)

and
TM TM TM

6/a =(/Z) Itan(7rXnj/An) (9b)

where
TM TM TM (9c)=Xn1+l Xn

and
xTM TM TM
n n - . (9d)n£t

9. Franz, W., "Uber die Greenschen Funktionen des Zylinders und
der Kugel", Z.Naturforsch., Vol.A9,p.705,1954;Franz Walter,
and Raimund alle,"Semiasymptotische Reihen fur die Beugung'
einer ebenen Welle am Zylinder", Z.Naturforsch.,Vol.AlO,
p.374, 1955.

9. Brill, D., and H. Uberall,"Acoustic Waves Transmitted through
Solid Elastic Cylinders", J.Acoust.Soc.Amer., Vol.50,p.921,
1971; Gaunaurd, G.C., E.Tanglis, H. Uerall and D. Brill,
"I t nd Ettrir esyngfces to A u ist~ej ab ering I:
SpnercNaf -arge 3f Rpp . ys.
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Equations (9a,b) are sufficient to determine e and 6 since L ,and
Xn£ are provided by the observed resonance locations and widt l,
so that the inverse problem (i.e. the determination of the proper-
ties of the scattering object from the observed properties of the
echo) has been solved for the present case. This serves to
illustrate the power of the resonance approach as regards a utili-
zation of the information contained in the resonances for purposes
of target discrimination, being a power which evidently extends
far beyond the simple example that has been analyzed herelOll

[4.11, 4.16, 4.19].

We wish to thank Messrs. P. J. Moser, J. D. Murphy, and A.Nagl
for their contributions. The support of the Naval Air Systems
Command, AIR-310B, and of the Independent Research Board of NSWC
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10. Gaunaurd, G. C., K. P. Scharnhorst, and H. Uberall, "New
Method to Determine Shear Absorption using the Viscoelasto-
dynamic Resonance-Scattering Formalism", J. Acoust. Soc.
Amer., Vol. 64, p. 1211, 1978.

11. Guanaurd, G. C., and H. Uberall, "Deciphering the Scattering
Code Contained in the Resonance Echoes from Fluid-Filled
Cavities in Solids", SCIENCE, Vol. 206, p. 61, 1979.



RADAR ECHO ANALYSIS BY THE SINGULARITY
EXPANSION METHOD

Calvin H. Wilcox, University of Utah, Salt Lake City, UT 84112

ABSTRACT

Pulse mode radar operation is analyzed under the assumption that the
scattering object F lies in the far field of both the transmitter and the
receiver. It is shown that, in this approximation, the radar signal is a
plane wave s(x -80 -t,0 0) near F , where 00 is a unit vector directed
fron the transmitter toward r , and similarly the echo is a plane wave
e(x e - t,8,8 0) near the receiver, where e is a unit vector directed from r
toward the receiver. Moreover, it is shown that

e(r,0,60) = Re {f ei T(w0, E0) (w,0o) dw

where §(w,0o) is the Fourier transform of s(-i,0 0) and T(w0,w0o) is the
scattering aplitude in the direction a due to the scattering by F of a
CW mode plane wave with frequency w and propagation direction 0o . Finally
the singularity expansion method is used to show that

e(T1,8,0) - e n Tn( 0 ,0 0) §(wn'0o) Em t'jn < 0

1. INTROD0rlCON - RADAR ECO PREDICTION

This paper presents an application of C. E. Baun's singularity expansion
method (SEX) [2.1] and the author's method of asymptotic wave functions [6.115,
6.119, 6.120] to the prediction of pulse mode radar echoes from bounded scat-
terers. The results presented here are generalizations of corresponding results
for sonar echoes [6.117]. Only a summary of the principal concepts and results
is presented here. A complete exposition of the theory is planned for a
separate publication.

This research was supported by the Office of Naval Research. Reproduction in
whole or part is permitted for any purpose of the United States Goverrimnt.
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1.1 Physical Assumptions

Radar echo structure is analyzed below under the following assumptions.
The radar systan (transmitter and receiver) operates in a stationary homoge-
neous isotropic unlimited medium. The system is stationary with respect to the
medium. The scatterers are bounded perfectly conducting objects. The scat-
terers are stationary with respect to the medium. The transmitter and receiver
are in the far field of the scattering objects. In addition it is assumed that
secondary echoes due to the radar system components are negligible.

1.2 Mathaatical Formulation

A fixed Cartesian coordinate system is used throughout the paper.
x = (xl,x 2 ,x 3)E R 3 denotes a coordinate tripleof this system and t E R de-
notes a time coordinate. r denotes a closed bounded subset of R3 that re-
presents the scatterers and 2 = R - F denotes the domain exterior to F .
The common frontier of F and Q , which represents the surface of the scat-
terers, is denoted by aQ . The medium filling 2 is characterized by a
dielectric constant c and a magnetic permeability p . It will be assumed
that £ = 1 and o = 1 since this can be achieved by a suitable choice of
units.

The electric and magnetic fields will be described by their components,
(E1 ,E2 ,E 3) and (H2 ,H2 ,H3) respectively, relative to the fixed Cartesian
system. It will be convenient to use the notation and conventions of matrix
algebra, rather than vector algebra, and to characterize the electromagnetic
field by the 6 x 1 column matrix

(1.1) u = u(t,x) = (E1 E2 E3 H, H2 H3)T

where MT denotes the transpose of matrix M . Similarly, if the electric
and magnetic current densities that generate the field are described by their
components, (J,J2,J3) and (J,J2,J3) respectively, then

(1.2) f = f(t,x) = (J 1 J 2 J 3 J1 J2 j3)T

characterizes the field sources. With these conventions Maxw7ell's field equa-
tions can be written

3
(1.3) Dtu+ I A. D.u+f=O for tE R,xE2j=l J

where Dt = D/3t , D. = /3x. (j = 1,2,3) and A,, A2, A 3 are the three

synmtric 6 x 6 matrices defined by

3 0 M(p) 0 P3-P21

(1.4) 1A. = M(p) M(p) -P3 0j=l j -M(p) 0P1 0

PA-P
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The field equations (1.3) will be supplemented by the boundary condition for a
perfect electrical conductor. It can be written

(1.5) M(n) E = 0 on DQ

where n = (n1,n2,n3) is a unit normal vector on Do and E = (El E2 E3)T is
the electric part of u .

A theory of solutions with finite energy of (1.3), (1.5) was given in
[6.118]. The total field energy at time t is given by

(1.6) E = I u(t,x)T u(tx) dx

where dx = dxl dx 2 dx 3 . The theory of [6.118] makes use of the energy norm

(1.7) l1ull = f1 f Q u(xPT u(x) d 1

and corresponding Hilbert space H . The pulse mode radar echoes constructed
below are in H.

2. PULSE M)DE RADAR SIGNAL STRUCMURE

The transmitter will be assuned to be localized in the ball B(xo,60) =
{X: Ix-xoI < 6o} and to act during an interval 0 < t < to . The correspond-
ing pulse moade radar signal is the electromagnetic ffeld- uo (t,x) that is
generated by f when no scatterers are present. Thus u0  is characterized by
the conditions

3
(2.1) Dtuo + I A. D.uo+f =0 for tER,xER ,

j=1 I

(2.2) uo(t,x) = 0 for t < 0 , xE R 3

The field u0 can be constructed by Fourier analysis or by the method of re-
tarded potentials [6.115, 6.117, 6.119] but these constructions will not be
used here.

2.1 Asymptotic Wave Fields
I

For definiteness the scatterers are assumed to be localized in the ball
B(0,6) centered on the origin: r C B(0,6) . As a normalization it is assumed
that 5 z 1 and 5o 1 1 . With this convention the assumption that the trans-
mitter lies in the far field of r can be formulatedas x01 1 . The
signal, propagating at the speed c = (cj) - / 2 = 1 , will arrive at r at a
time t of the sane magnitude as Ixol , whence t >> 1 i

It was shown in [6.115] that each signal u0 with finite energy has an
asymptotic wave field ut" of the form
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(2.3) u(t,x) -x-xoI- s(Ix-xoI - t,), 6 = (X-Xo)/tx-

such that

(2.4) lim IIuO(t,-) - Uo(t,.)IlR3 = 0
t-4- 

R

The wave profile s(i,B) is defined for all (t,) e R × S2 where S2  is the
unit sphere in RI . Moreover, by specializing the results of (6.1151 it can
be shown that s(T,O) has the properties

(2.5) J . s(r,o)T s(,0) d dT < ,
JR Js

2

where dO is the element of area on S2 (solid angle), and

(2.6) P(0) S(T,0) = s(-r,H)

where

(2.7) P(6) = [ - g M() j for all 0 CS 2

1 -M(6) l-eo&

In (2.7), 66 denotes the dyadic, or tensor, product of a with itself with
components 1j6 k . Property (2.6), (2.7) characterizes the polarization pro-jko

perties of the asymptotic wave fields u 0 .

The functior s(T,6) will be called the pulse mode transmitter radiation
pattern. It can L2 constructed from the source function f ; see [6.1171.
However, it will be assuned here that s , rather than f , is given since s
is the important function in pulse mode transmitter design. The construction
of a transmitter with a prescribed radiation pattern is the task of the trans-
mitter design engineer.

2.2 The Plane Wave Approximation

Define 60 E S2 by xo = -Ixo! o . Then o0 is directed from the trans-
mitter toward the scatterers and for x near F one has

(2.8) Ix - x Ix ol + eo x + 0(jxor - ') for Ixol - 1

Hence, by (2.3),

O-1(2.9) Uo(t) = Ixol s(Oo x - t + IxoI,eo) + O(Ixol~2)
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near F . If the error term is dropped one has a pulse mode plane wave signal.
This approximation is made in the remainder of the paper.

3. PULSE M)DE PLANE WAVE SCATTERING

A plane wave signal

(3.1) u0 (t,x) = s(x • 00 - t,00) , supp s(', 00) C [a,b]

is assumed where the wave profile s(T,60) satisfies

(3.2) P(Oo) s(-,Oo) = s(T,0o)

Such a field is a solution of Maxwell's equations (2.2) with f - 0 . The total
field u(t,x) resulting from the interaction of u0 (t,x) with the scatterers
is characterized by the properties

3
(3.3) Dtu+ A. D.u=0 for tER,xE ,

j=l 3

(3.4) M(n) E = 0 for t ER, x E ,

(3.5) u(t,x) = uo(t,x) for t + b + 6 < 0, x E Q

where E = (ul u2 U3 )T  is the electric part of u . The scattered field, or
echo, is defined by

(3.6) Ue (t,x) = u(t,x) - u 0(t,x) for t e R, x E

f

The author has shoam, by the method of [6.117, 6.119], that ue has an asymp-
totic wave field

(3.7) ue(t,x) = Ix-' e(IxI - t,0,6,), x = Ixi e

that converges to ue (t,x) in energy when t

(3.8) lir Iue(t,-) - u0(t,)iI = 0
ee 

The proof follows that for the scalar case of (6.117].
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Points x in the far field of F satisfy jxj >> 1 . The echo ue will

arrive at a receiver at such a point when t >> 1 . Hence the echo may be
approximated in the far field by the asymptotic field (3.7). For this reason
e(t,0,00) will be called the echo waveform. It depends on the direction of
incidence of the plane wave (3.1) and the direction of observation 6 . In
this approximation, the echo prediction problem is the problem of constructing
e(T,00 0) when the transmitter radiation pattern s(T,0 0 ) and the scatterers
F are given. The solution to this problem given below is based on the theory
of CW node radar echoes outlined in the next tw sections.

4. CW MODE SIGNAL STRTUR

The CW mode electromagnetic fields are solutions of the field equations
(1.3) of the form

(41)uti) lt -iwt

(4.1) u(t,x) = e v(x), f(t,x) = e P(x)

whence

3
(4.2) j A. D.v - iv=

j=1 *3 3

CW nude signals in R3 are generated by the Green's matrix [6.88]

vv + 2 13 - i3A(V)

(4.3) G(x,x',w) V ei"Ix-x '  1

ikM(V) VV + 13 4Ix-x" i

where In denotes the n n unit matrix. G is the outgoing solution of the

equation

(4.4) A. D. - iu] G(x,x',,) = (x - x') I

The outgoing solution in R3 of (4.2) is

(4.5) v(x) - G(x,x',wi) (x') dx'R 3

Asymptotic evaluation of v(x) for large lxi using (4.3) and (4.5) gives the
far field form

"i I
Ni
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(4.6) v(x) (2) 112 eiWx (8) (-W) + 0(13(K)

1xl

where x = lxJO, P(E) is defined by (2.8) and

(4.7) (p) _ 1 3 e-ip 'x o(x) dx(21T) J7F R 3

is the Fourier transform of p(x) . In particular, noting that P(-e) P(e) = 0

it is seen that the Silver Miller radiation condition for v(x) can be written

(4.8) P(-O) v(Ixje) = 0(x-'), 1x -

4.1 CW Mode Plane Waves

G(x,x' ,w) represents a CW spherical wave from a point source at the point
x' . On putting x' = -Ix' In in (4.3) and making Ix'I - with x fixed
one finds after a short calculation

(4.9) G(x,x',w) = (27x'l) - w ei 1x'1 eir'XP(s) +0(Ix'- 2 )

Dropping the error term gives a matrix CW mode plane wave electromagnetic field.
The general CW mode plane wave field is obtained by applying (4.9) to a con-
stant vector and dropping the error term. It has the form

(4.10) v(x) - ei  P(n)c, p = IPn

where c is an arbitrary 6-component vector. This my also be derived from
(3.1), (3.2) by taking s(i,n) = eiw" P(n)c . (4.10) is equivalent to the
familiar formulas

(4.11) E(x) elp '3 a, H(x) = ePX(n x ), c • n = 0

Twhere v = (El E2 E3 H, H2 H3) , p = Jp)n and a = (aic 2,c 3) is an arbitrary
vector.

5. CW MODE ECHO S'lMlrrURE

The colums of the 6 x 6 matrix-valued function

(5.1) qp(x,p) = (27) -3 /2 ei'P x P(n), p = Ipln

,$ I .. , _- . .. . ... .:



488 C. H. WILCOX

are CW mode plane waves of the form (4.10). The scattering of the W mode
matrix plane wave (5. 1) by r produces a CW mode matrix-valued field

(5.2) (x,p) = i°(x,p) + sc (x,p), x C S , p eR3 - {0}

that is characterized by the properties

(5.3) 1 A. D. - ijpj] (x,p) = 0, x E?j -l 3 3

(5.4) M(n) E(x,p) = 0 , x E Q

(5.5) P(-O) pC(JxJBp) = O(xL-2), 1xl -

where P is the electric part of (a 3 x 6 matrix). The author has shown

the existence and uniqueness of q(x,p) for a large class of domains S? , in-
cluding the "cone domains" of N. Weck [6.114] and domains having S. Agnn's
"restricted cone property" [6.1]. The proofs, which generalize the results of
[6.119] to Maxwell's equations, are based on coupactness results of N. Weck
[6.114] and C. Weber [6.113], respectively. In the special case that 3Q is a
smooth surface p(x,p) can be constructed by the integral equation method
described below.

5.1 Far Field Form of CW Mode Echoes

c (x,p) is the CW mode echo produced by the scattering of p0 (x,p) by
F . An integral representation of 'sc by the Green's matrix (4.3) can be used
to derive the far field form

eill xl +~x
(5.6) sc(x,P) = T(Iple,p) + 0(IXI-2) , x = IxIe4 lxl

where T(p,p') is a 6 x 6 matrix-valued scattering amplitude. The polarization
of the echo in the far field is characterized by the property

(5.7) P(n) T(lpln,lpln') = 0

5.2 Construction of T(p,p')

Define

(5.8) J(x,p) = n(x) x iPH(xp), x E 1

'a.-
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where H is the magnetic part of J(x,p) is the matrix electric current

density on 3Q induced by the plane wave i p . The divergence theorem and the
jump relations of potential theory can be used to show that

(5.9) J(x,p) = 2(nx q'(x,p)) + J K(x,x', Ip J(x',p) dS'

where K is the 3 x 3 matrix-valued kernel

L 'x-x' I ei x - '

(5.10) K(x,x' ,) = 1 V e n(x) e 13
I x-x'J j x-x' I

If 7 is smooth then (5.9) is a Fredholm equation and can be used to con-
struct J(x,p) and w(x,p); cf. L. Marin and R. W. Latham [3.7, 3.81 and L.
Marin [3.9, 3.10]. The scattering amplitude can be calculated from J(x,p)
and the relation

(5.11) T(p,p') = (2T)3 / 2 2ilp J p°(xp)* fJ(x'P')dS ' p = pt

6. PULSE MODE RADAR ECHO STR URE

The solution of the pulse mode radar echo prediction problem formulated
in §3 is given by the relation

(6.1) e([,0,eo) = Re ei T(O,we0o) §(.,,o) d,}

where

(6.2) ( ,o) - ie - i '  s(T,0o) dT

(24) 1/2

is the Fourier transform of s(T,00) . Thus under the far field assumptions
of §1 the echo waveform is determined by the transmitter waveform and the
matrix scattering amplitude T(we,w 0 ) . The latter can be calculated by
solving the integral equation (5.9) an. using relation (5.11).

Equation (6.1) is the generalization to electromagnetic fields of the
analogous result for acoustic scattering that was derived in 16.117]. A proof
of (6.1) may be given by the method of [6.1171. The key item in the proof is
the theorem that the CW mode fields 4(x,p) are a complete family of gener-
alized eigenfunctions for the Manwell system. A proof along the lines of
[6.119] may be based on the results of Weck [6.114] or Weber [6.113].

~ ~ A)
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7. SEM E(PANSICN OF PULSE NODE RADAR ECHOES

If the scatterers r are bounded by smooth surfaces the integral equation
(5.9) can be solved for J(x,we) by the Fredholm determinant method [6.116].
Note that ip°(x,wo) and K(x,x',w) are entire functions of w . It follows
from the Fredholm theory that

(7.1) J(x,WO) = M(x we)

and hence

(7.2) T(wO,weo) = (wOweo)

where D(u)), M(x,we) and N(wo,we0 ) are entire functions of w . Moreover,
the poles of T(wo,weo) can be shown to lie in the lower half-plane. These
facts can be used to develop an SEM expansion of the echo waveform (6.1).

The reality of s(T,0o) and synmetry properties of T(p,p') imply that
(6.1) can be rewritten

(7.3) e(r,6,8o) = J e'  T(we,weo) 9(w,e 0)dw .

It is natural to regard this integral as a contour integral in the w-plane and
to shift the contour to a line Im w = -b < 0 . Assume that the poles wn
of T(wo,w6o) satisfy

(7.4) D'(w n) n 0,n = 1, 2, 3,'--

(7.5) {n : -b < Imw n < 0} is finite

(7.6) IN(wa,w0o)l < Cjw1 m for -b <Im w < 0

where C and m are constants. Then (7.3) implies

(7.7) e(r,O,80 ) = I e n T(0,0) §(wnn0) + O(ebT)

where



RADAR ECHO ANALYSIS 491

(7.8) T (e,eo) = -ni Res T(wO,wo)
n

Hypothesis (7.4) is inessential. If T(we,wO0) has a higher order pole then
it

in (7.7) e h will be multipliedby a polynomial in T . Hypotheses (7.5)
and (7.6) are closely connected with the geometry of r and the associated
question of the exponential decay on bounded sets of the scattered fields. Por
acoustic scattering there is a considerable literature on these questions: see
[2.4] and (6.69] and the literature cited there. Far field natural modes for
electromagnetic fields have also been defined and used by C. E. Baum [3.31
and F. M. Tesche [4.49].
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This special issue of Electromagnetics is dedicated to the subject of the I"
Singularity Expansion Method (SEN) - in particular the mathematical aspects of .
SEM. -LaQ.Za , Ne issue forms the proceedings of a meeting, 4jMathematical
Foundations of-%e Singularity Expansion Metho&,held at the Carnahan House of
the University of Kentucky in November 1984j*der the sponsorship of the Air
Force Office of Scientific Research (AFOSR).-2The purpose of the meeting was to
bring together a group of mathematicians and engineers who have worked on differ.
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ITEM #20, ONTINUED: etween the groups. The hope, of course, was that this
communication m t lead to the resolution of some questions regarding the
mathematical rigor that have persisted throughout the' development of the SEN
This communication we believe certainly led to a better understakding betwee
the two groups of what the important questions'are and the available means o
attacking these questions. \

Ten years have passed since Carl Baum first formalized the SEN as a meansl9f
treating transient and broad band electromagnetic scattering problems 
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This development was sparked by the results from many experiments where differ-
ent scatterers were exposed to transient electromagnetic fields. It was
observed during these experiments that the response of the scatterer appeared
to consist of a superposition of damped sinusoidal oscillations whose frequen-
cies are related to the size of the scatterer. The natural question that arose
was: "Is it possible to express any external scattering response as a sum of
damped oscillations whose resonances and damping constants only depend on a
cavity?" The SEM was developed when trying to answer this question.

Much work during the last ten years has gone into trying to put the SEN on a
solid mathematical foundation and applying it to various scattering problems.
Workers who have tried to solidify the mathematical foundations for the method
have found a great deal of frustration in dealing with such issues as space-
time problems, nonself-adjoint operators, and analytic function theory. There
are few general mathematical results which define the SEN representation within
the confines of well defined mathematical and physical constraints. In many
cases, workers have had to make whatever observations they can from the solution
of a specific problem and then extend these results using their physical/mathe-
matical intuition. The wealth of semiempirical data acquired this way neverthe-
less have resulted in heuristically derived rules for the applicability and
validity of the SEN. Thus, even in the face of the persistent difficulties in
developing general theory, SEM stands as a powerful tool in electromagnetic and
acoustic scattering theory. The strength of the SEN primarily rests with the
fact that both transient and time harmonic scattering quantities can be repre-
sented as a sum of conveniently factored products. One factor in this product
depends only on the scatterer itself whereas the other depends on the exciting
(or incident field.) The quantities that enter into the object-dependent factor
are the object's complex resonant frequencies and the associated natural mode

currents. The constellation of natural frequencies can be used to characterize
the scattering object, thus opening the possibility of using SEN for target
classification purposes. The expansion of the object's response in terms of
natural modes allows for a circuit description of certain EN properties of the
object. The discussions during the meeting in the Carnahan House reflected the
differences in the mathematician's and engineer's outlooks. A mathematician in
participant was careful to categorize his comments into 'results' (conclusions
which can be mathematically proven) and 'observations' (conclusions drawn from
special cases but not proven mathematically). Engineers were quick to state
that a significant part of their SEM related activity is predicated upon 'obser-
vations' only (as is so much of their overall work). As a consequence the
papers contained in this issue can perhaps be described as a collection of
'results' and 'observations'. We leave it to the reader to distinguish between
,results' and 'observations' and the relative merit of the two.
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